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ABSTRACT

This tutorial attempts to provide a frank, step-by-step approach to
Reed-Solomon (RS) error correction coding. RS encoding and
RS decoding both with and without erasing code symbols will be
emphasized. There is no need for this tutorial to present rigorous
proofs and extreme mathematical detail. Rather, this tutorial
presents the simple concepts of groups and fields, specifically
Galois fields, with a minimum of complexity. Before RS codes are
presented, other block codes are presented as a technical
introduction into coding. A primitive (15,9) RS coding example is
then completely developed from start to finish demonstrating the
encoding and decoding processes both with and without the soft
decision capability. This example includes many, common algorithms
necessary to perform RS coding operations. A few other examples
are included to further increase understanding. Appendices include
RS encoding and decoding hardware design considerations, matrix
encoding and decoding calculations, and a derivation of the famous
error-locator polynomial. The objective of this tutorial is to
present practical information about Reed-Solomon coding in a manner
such that people can easily understand it.




INTRODUCTION

What is error correction? The general concept of error correction
is restricting the characteristics of source signals in such a
manner that sink signals can be processed to reduce noise effects.

What is error correction coding? Error correction coding attaches
redundancy, e.g., parity-check symbols, to the data at the system's
error correction encoder and uses that redundancy to correct
erroneous data at the error correction decoder. In other words,
error correction coding is simply restricting the characteristics
of the output signals of the system's encoder so that after the
signals have been sent to the system's decoder, the decoder will
have a “very high confidence level of correctly extracting the

original source signal for the decoder's corrupted input.

What is the purpose of error correction coding? The purpose of
error correction coding might be expressed in a multitude of ways
such as (1) increasing the reliability of data communications or
data storage over a noisy channel, (2) controlling errors so
reliable reproduction of data can be obtained, (3) increasing the
overall system's signal-to-noise energy ratio (SNR), (4) reducing
noise effects within a system and/or (5) meeting the demand for
efficient, reliable, high performance, and economically practical
digital data transmission and storage systems. All of these
subjective terms can be defined for a particular application.

When we are learning a "new concept" or reviewing a concept that
was once understood, we are most often interested in simplicity.
In an effort to minimize complex1ty, this tutorial presents simple
examples in clear detail without the need for extensive
understanding of complicated mathematics. Once you finish this
tutorial, you will have a practical understanding of Reed-Solomon
coding. )
Scme of us are not aware that we all use error correction coding in
our daily personal lives. Do you remember times when you really
wanted someone to "get the message?" Suppose that you are planning

a meeting. You are talking to someone and to be sure that this
person heard you indicate the time and place, you repeat the time
and place. In order to assure yourself that the person received

your exact message, you repeated the same exact message over again.
The repetition of the message is a form of error correction
encoding; you are adding redundancy to your message. Your intent
was to reduce the chance of your 1listener actually hearing
different words than what you were articulating.

ta
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Here is another example: You are 1listening to a soft spoken,

articulate speaker in a large auditorium filled with people. You.
hear this person say, "... Then we . all sat up our fellahscopes and
viewed Clavius, the largest crater on the near side of our moon and
the site of the monolith...." I did not make a typo: you-heard
"...fellahscopes..." Common sense tells us that this person said
"telescopes." How? Well, we performed a decoding operation on our
received message. Since there was noise in the room, we did not
clearly hear the articulately spoken word "telescopes," but we
heard "fellahscopes." The first step in our common sense decoding
algorithm is flagging "fellahscdpes" as not being a valid word; our
language system has redundancy in the sense that there exists

invalid words which are never to be used. The second step is to

come up with a list of all suspected, valid words which are very
close to "fellahscopes." Some solutions are microscope, telescope,

oscilldscope, radarscope, and horoscope. We then simply select the

Closest valid word to "fellahscopes." Since this is an auditory
example, "telescopes" sounds closest to "fellahscopes." If this

was a textual (or pattern example), then "telescopes" would be

closest to "felescopes."

These everyday examples demonstrate what error correction coding is
and how it works. Adding error correction capability reduces the
chance of decoding some other message than the original message.
To add error correction capability, we append redundancy to the
message that we want to communicate, and then we transmit (or
record) it. Finally, we must be able to receive and decode it.

The Reed-Solomon (RS) codes have been finding widespread
applications ever since the 1977 Voyager's deep space
communications system. At the time of Voyager's launch, efficient
encoders existed, but accurate decoding methods were not even
available! The Jet Propulsion Laboratory (JPL) scientists and
engineers gambled that by the time Voyager II would reach Uranus in
1986, decoding algorithms and equipment would be both available and
perfected. They were correct! Voyager's communications system was
able to obtain a data rate of 21,600 bits per second from
2 billion miles away with a received signal energy 100 billion
times weaker than a common wrist watch battery!

I want a Dick Tracy audio/video, transmit/receive wristwatch! RS
codes have been an integral part of high performance, high
productivity, electronic device markets with annual sales expected
to top 17 billion American dollars by 1990. RS codes have direct
application within many communications markets and nearly all the
data storage markets. Some of the more notable markets are the
following: In the optical compact disk (CD) markets there are
(1) compact disks for high fidelity audio data (i.e., CD players
and disks), (2) compact disks for computer data (i.e., CD -~ read
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only memory (CD-ROM) drives and disks), (3) compact disks
interactive with a computer to display high fidelity audio, images,

and textual data (i.e., CD-I drives and probably disks),
(4) compact disks for high fidelity video (and audio) data (i.e.,

CD-V players and probably disks), (5) compact disks for data which
also have write capability for the user (i.e., WORM drives and
probably disks where WORM represents write-once, read-many), and
(6) compact disks for data which also have multiple write and

erasure capabilities for the user (i.e., erasable optical disk
drives and probably disks). In the magnetic media markets there
are (1) magnetic tape with multiple write and erasure capabilities
for computer data storage and/or high fidelity audio (i.e., DAT
drives and tapes where DAT stands for digital audio tape) and
(2) magnetic disks with multiple write and erasure capabilities for
computer’' data (i.e., hard disk drives and maybe disks). 1In the
communications markets there are (1) communications over the
telephone systems with such applications as advanced facsimile
machines (which send and receive imaging data) and high speed
modems (which usually send and receive computer data),
(2) satellite communications with such applications as the Hubble
Space Telescope, the Mobile Satellite Terminals, and the
300 megabits per second (Mbps) return link of the Space Station
Freedom/Tracking and Data Relay Satellite System (SSF/TDRSS), and
(3) deep space communications with such applications as Voyager,
the Galileo Orbiter, the Mars Observer, and the Cassini Titan
Orbiter/Saturn Probe.

Today, many error correction coding circuits exist and are easily
available in different RS coding architectures from different
sources. There are also many single chip codec (encoder / decoder)
circuits available with and/or without symbol erasure capability.
Some of the most powerful and talked about block codes available
today are the (255,255-2t) RS codes. There are even single chip
codecs available for many of these (255,255-2t) RS codes. An
example of a commercially available single integrated circuit codec
chip is the t<10, n=255 configurations of the (n,n-2t) RS codes.
These particular single chip codecs can operate in excess of 10

megasymbols per second or rather more than 80 IMbps! For many
applications, size, weight, and power considerations of high data
rate RS codes are gquickly becoming insignificant. Due to the

availability, reliability, and performance of today's Reed-Solomon
circuits, additional markets, 1like high definition television
(HDTV), should also start to open up.

People are even discovering new, practical uses of Galois fields
beyond the error correction (and/or detection), data compression,
digital modulation, and cryptography arenas. Some of these arenas
are in controls and digital signal processing. For example, not
only are there binary and ternary discrete Fourier transforms
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(DFTs), but there are also P-ary DFTs where P is a prime number.
In today's ever 1nr~rnac1nrt comnley and technol nnlca]_ world,
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sometimes the math does not fit into the physical system and
sometimes the nhvgica] system does not keep up with the math.

Sometlmes there must be full duplex communlcatlons between the

The Reed-sglomgn error correction codes were introduced by Irving
S. Reed and Gustave Solomon in 1960. Their work was 1ndependent of
other simllar works 1like the work by Bose; Chaudhuri; and

Hocquenghem (i.e., the BCH codes). Even though the RS codes are a
subgroup of the BCH codes, RS codes have pillaged and burned many
of its forbearers and peers in efficiency, practicality, and rates.
RS codes have generated many useful and widespread applications.

A lot of credit goes to Reed and Solomon.

This tutorial is organized with a conscious effort to present the
material in a clear, concise, and simple manner. A universal error
correction coding notdtion semi-exists. I will try to keep the
notation as standard and as clear as possible. For a list of the

notation used, please refer to the notation section.

This tutorial is organized into five chapters. The material within
the chapters and even the chapters themselves are designed to allow
skimming if the person already knows the material. Considerable
effort has been expended to make each chapter self-contained beside
the numerous cross-references linking the entire tutorial together.
I try to present the specific definitions as needed and locate them
near to the needs. In order to develop an understandable
presentation, some specific definitions of terms appear much later
within the chapter than the first usage. However, all these design
considerations allow all the important details, along with its
prerequisite details, to be presented to a beginner in a logical
(and condensed!) manner.

One of the best ways to demonstrate how something works is to

perform an example from start to finish. Throughout
chapters 3,4,5, and appendix C, a primitive (15,9) RS code with
some arbitrary inputs will be used as the main example. This

particular code was chosen because it has a code rate k/n greater
than one half and yet is still powerful enough and small enough to
demonstrate. All the encoding and decoding stages will be
demonstrated. This demonstration includes working through some of
the different algorithms available at each stage obtaining
equivalent results. Also, the case of encoding and decoding using

symbol erasure (i.e., soft decision) capability will be
demonstrated. This example starts out showing all the necessary
mathematical rigor, but as this exanple progresses and similar

operations are repeated, only the important results will be shown.
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Since all the essential mathematical rigor will be shown at least
once, the arithmetic that is not shown is left as exercises for the

reader. '

In chapter 1 we will learn how to perform Galois field - (GF)
arithmetic. 1In the past we have learned algebra (infinite field
manipulation), calculus (summation using algebra in a different
application), complex arithmetic (two dimensional algebra), Bococlean
algebra (manipulating binary elements according to rules similar to
algebra), and now finally we get to learn GF algebra (finite field
algebra using most of the standard elementary algebraic rules).
Within this chapter we will derive the GF(16) implementation needed

to work our (15,9) RS coding example.

In chapter 2 we will learn about the basics of block codes for
"coding* applications. Within this chapter we introduce some
terminology, concepts, definitions, structure, and history of error
correction codes. For truly complete and absolutely accurate
material, we should refer to authoritative texts of which some are
in the reference and recommended reading sections. This chapter
should provide a general literacy of error correction coding.
Hopefully, it reads easily for the beginner and yet is pleasing
enough for the experienced person.

In chapter 3 we will learn how to encode Reed-Solomon codes. Here
we actually work the (15,9) RS example for the encoding process.

In chapter 4 we will learn how to decode Reed-Solomon codes. Here
we actually work the (15,9) RS example for the decoding process.

In chapter 5 we will learn how to design the coding system when we
have the symbol erasure capability. Here we work this primitive
(15,9) RS example modified to show the power of erasing symbols.

In appendix A we will learn how to encode RS codes using hardware.
State tables, equations, and worked out examples help us to
understand the encoder's shift register circuit.

oy

wi decode RS codes using rdware.
neral discussion of some of the shortcuts and design
considerations help us start thinking of how to design a practical
decoding system.

. . o
pendix B we will learn how to

In appendix C we will learn how to perform the RS coding operations
using matrices. Matrix calculations are probably more familiar to
us than finite field polynomial calculations. We can decode using
only matrices, but we still face the challenge of determining the
estimate of the error.
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In appendix D we will learn how to derive the ever popular
error-locator polynomial o (X). Here we should see why we often.
work more with the reciprocal of o(X) [denoted as o.(X)] than o(X).

Some readers prefer details first and completed definitions second.
These readers may desire to read appendix D before they read the
chapters and the appendices. Appendix D is a very brief general
mathematical overview of RS cocding.

I want to make Reed-Solomon coding easy to learn. I also want to
present enough detail so we may become and stay fairly literate in
Reed-Solomon coding. Hopefully this document has enough redundancy
in it such that people will receive a good understanding of
Reed-Solomon coding. For your information, this tutorial went
through’ two review cycles. Therefore, maybe it is "error free!!t"

content, but I am sure some still remain. If anyone would happen
to discover any noteworthy errors within this tutorial and would
let me know, I will be appreciative.

After you have finished this tutorial, I hope you will feel that
this tutorial is helpful and useful to yourself and the people you
work with.

I wish to specifically thank the following people for their help in
developing this tutorial: Bill Lindsey who served on the second
review cycle and gave me an interested, detailed, and technically
accurate critique; Phil Hopkins for his help in teaching me the
finer points of error correction coding; and Rod Bown for his
written and spoken comments which helped me to extensively rewrite
the first chapter.

OT a directive in any form.

-7- MSC-21834



CHAPTER 1
GALOIS FIELD ALGEBRA

Galois field (GF) algebra, sometimes referred to as ground field
(GF) algebra, is similar to high school algebra or arithmetic
except that GF algebra operates within a finite field. Take the
case of base ten, integer arithmetic. We can take the element
denoted 7, sum with the element denoted 8, and obtain the element
15. 1If we take some integer and either add, subtract, or multiply
it to another integer, we always result with some element in the
infinite set. However, in GF algebra it is possible to take the
element 7, sum with the element 8, and obtain the resulting element
only within a finite number of elements. In GF arithmetic the
result of this example is not 7,8, or O0. The result of this

example may well be any one of the following elements: i, 2, 3, 4,
>, 6, 9, A, B, ¢, D, apples, oranges, ....., the last element in

the field. You can not assign all the results of an operation,
given all the possible inputs, any way you desire. Algebraic laws
will develop the addition and multiplication tables for us.

To learn about Galois field algebra, we must first learn the
algebraic laws governing our Galois (or finite) field. These laws
are the standard algebraic laws. These laws may have, however,
become sc familiar to us, that some of us may have even forgotten
them! We got so into the habit of only being concerned with the
results that we forgot about the underlying algebraic laws which
govern the entire system; we just memorized our addition and
multiplication tables. Let us first present the basic definitions,
theorems, and properties needed to understand GF arithmetic. Most
of sections 1.1 and 1.2 are rewritten from Error Control Coding:
Fundamentals and Applications by Shu Lin and Daniel J. Costello,
Jr. 1In section 1.3 we use the definitions previously presented in
sections 1.1 and 1.2 to derive the ground field GF(2). GF(2) is
the ground field of the extended Galois field GF(2™) that we use in
most block error correction codes. In section 1.4 we derive
GF(2") = GF(2%) = GF(16) from GF(2). This GF(16) is the field that
we are going to use for the (15,9) Reed-Solomon example. Some of
the mathematical structure of GF(2") is examined. This structure
includes some different field element representations and some
different field implementations of GF(2"). This section also
includes examples of adding, subtracting, multiplying, and dividing
field elements. Then the final section presents all the underlying
algebraic structure necessary to create GF(P"). GF arithmetic is
the arithmetic of coding for the RS coding world.

l.1 GROUPS

Let G be a set of elements. A binary operation * on G is a rule
that assigns to each pair of elements A and B a uniquely defined
third element C = A#*B in G. When such a binary operation * is
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defined on G, we say that G is closed under *. Also, a binary
operation * on G is said to be associative if, for any A, B, and C
in G: A*(B*C) = (A*B)*C. Definition 1 defines a group.

DEFINITION 1: .
A set G (on which a binary operation is defined) is defined to be
a group if the following conditions are satisfied:

a. The binary operation * is associative.

b. G contains an 1dent1ty element I such that, for any A in
G, A*I = I*A = A.

c. For any element A in G, there exists an inverse element
A' in G such that A*A' = A'*A = I.

A group G is said to be commutative if its binary operation * also
satisfies the following condition:

A*B = B*A, for all A and B in G.
We should also make a note of the following two theorems derived
from definition 1: THEOREM 1 is that the identity element I in a
group G is unique. THEOREM 2 is that the inverse element A' of a

group element is unique.
s information should be all that we need to know about groups to
perform GF arithmetic.

1.2 FIELDS

Roughly speaking, a field is a set of elements in which we can do
addltlon, subtractlon, multlpllcatlon, and d1v151onnw1thout 1eav1ng
the set. Addition and multiplication must satisfy the commutative,
associative, and distributive laws. Definition 2 defines a field.

DEFINITION 2:

Let F be'a set of elements on which two binary operations called
addition "+" and multiplication "'" are defined. The set F
together with the two binary operations "+" and "°" is a field if
the following conditions are satisfied:

a. F is a commutative group under addition M+, The
identity element with respect to addition I,y is called
the zero element or the additive identity I, of Fand is
denoted by 0 (zero).

b. The set of non-zero elements in F is a commutative group
under multiplication ®-%. The identity element with
respect to multlpllcatlon I is called the unit (or
unlty) element or the nultlpflcative identity I of F

and ic denoted hv 1 (one)

[ R . - N S ) § LD PR S § \Wiis g e

malt
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c. Multiplication "*" is distributive over addition "+";
that is, for any three elements A,B, and C in F:
A*(B+C) = (A°B)+(A°C).

It follows from definition 2 that a field consists of at least two
elements, the additive identity I_,, and the multiplicative identity
I, Soon, we will show that a field of these two elements alone
does exist.

The number of elements in a field is called the order of the field.
A field with a finite number of elements is called a finite field.
In a field, the additive inverse ‘of an element A is denoted by -A,
and the multiplicative inverse of A (provided that A#0) is denoted
by A''. Ssubtracting a field element B from another field element A
is defined as adding the additive inverse -B of B to A [i.e., A - B
is defined as A + (-B)]. If B is a non-zero element, dividing

A by B _is defined as multiplying A by the1 mult}plicative
inverse B! of B (i.e., A / B is defined as A * B = aB’!).

We should also make a .note of the following five properties of
definition 2: ©PROPERTY 1 is that for every element A in a field,
A0 = 0'A = 0. PROPERTY 2 is that for any two non-zero elements
A and B in a field, A'B # 0. PROPERTY 3 is that A°'B = 0 and A#0
implies B=0. PROPERTY 4 is that for any two elements A and B in a
field, -(A'B) = (~-A)°'B = A'(-B). PROPERTY 5 is that for A#0,
A°B = A°C implies B=C.

It is standard practice to either indicate multiplication by its
multiplication symbol "°" or by writing the elements adjacent to
each other [i.e., A°B = (A)°(B) = (A)(B) = AB]. Throughout the
rest of this tutorial I will represent multiplication as much as
possible by the most common practice of adjacent elements.

We should now know enough about fields to develop one.

1.3 BINARY FIELD GF(2)

At this point, we should have 1learned enough about groups and
fields and reviewed enough of the basic algebraic laws to go ahead
and develop a finite field. To demonstrate the idea of finite
fields, we start off presenting the simplest case, modulo-2
arithmetic. We will first present the binary group over addition
and then over addition and multiplication.

1.3.1 Binary Group

et of two integers, G={0,1}). Let us define a binary
ted as addition Y"+", on G as follows:
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Modulo-2 addition:

+ 0 1
0 0 1
1 1 0

Notice that this can be implemented with a single EXCLUQIVE—OR

gate! Anyway, this binary operation is called modulo-2 addition.
Let us prove that this is a group G:

Is G closed?

YES.
PROOF: ' ,
A+B = C,for all set elements A and B with the result C
also being a set element.

is also

0+0 ?=? 0 Yes, and C=0 a set element.
_ 0+1 ?=? 1 Yes, and C=1 is also a set element.
1406 ?=? 1 Yes, and C=1 is also a set element.
1+1 ?=? 0O C=0 is also a set element.

Yes, and

Is G associative?
YES.
PROOF:
A+(B+C) = (A+B)+C, for all A, B, and C.

0+(0+0) ?=2 (0+0)+0 VYes.
0+(0+1) ?=? (040)+1 Yes.
0+(1+0) ?=? (0+1)+0 Yes.
0+(1+1) ?=? (0+1)+1 VYes.
1+(0+0) ?=? (1+0)+0 VYes.
1+(0+1) ?=? (1+0)+1 VYes.
1+(1+0) ?=? (1+1)+0 Yes.
1+(1+1) ?=? (1+1)+1 VYes.

Therefore, definition 1, part a has been verified.

Does G contain an additive idéntity element I ,?
YES, I,,~0.
PROOF:
A+I o, = I *tA = A, for all A. -

0+0 ?=? 0+0 ?=? 0 Yes.
1+0 ?=? 0+1 ?=? 1 VYes.

Therefore. definition

----- £s2
re, definition 1, part b has been

o e A1Q O

Does G contain an additive inverse element A! for each set
element A?

YES, the additive inverse element A' for each element A is the set

o~ o L __ o~

element A itself.
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PROOF:
A+A' = A'+A = I_,,, for all A.

0+0 ?=? 0+0 ?
1+1 ?2=2 1+1 ?

o

? 0 Yes.
? 0 Yes.

Therefore, definition 1, part c has been verified. Therefore, we
proved that this set (0,1) is a Group G={0,1} under modulo-2
alddi+inn

UAd d =l \Jile

Is G commutative?

YES. .
PROOF:
A+B = B+A, for all A and B.
0+0 ?=? 0+0 Yes.
- 0+1 ?=? 140 Yes.
1+0 -?=? 0+1 Yes.
1+1 ?=? 141 VYes.

Therefore, this group G (0,1} is not only a group, but also a
commutative group under modulo-2 addition.

1.3.2 Binary Field

ina Avar a hin ry

bl YA <« &A1l

F =

ef ary
group, let us develop a binary field. We need to define modulo-2
multiplication " ",

Now, since we have modulo-2 addition "+" de

(= R 3 4 ) =1 AT A e A

Consider the same set of two integers, F={(0,1). Let us define
another binary operation, denoted as multiplication "°", on F as
follows:

Modulo-2 multiplication:

: 0 1

0] 0 0

1 0 1
Notice that this operation can be 1mp1emented with a single AND
gate! Anyway, this binary operation is called modulo-2
multiplication. Let us prove that this set F={0,1} is a field
under modulo-2 addition and multiplication:

Is F a comnutative group under addition?
YES, previously shown in F=G={0,1).

Is the additive identity element I,y of F called the zero element
denoted by 07?
YES, previously shown in F=G={0,1}.

Therefore, definition 2, part a has been verified.
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Are the non-zero elements a commutative group under multiplication?

YES.
PROOF:
Let G = non-zero elements of F=(0,1); let G=(1}.
Is G={(1) closed?
YES.

)
o
)
)
)

1°1 ?=? 1 Yes, and C=1 is also a set element.
Is G=(1) associative?
YES.

PROOF':

A*(B°C) = (A°'B) *'C, for all A, B, and C.

1°(1°1) ?=? (1°1) ‘1 Yes.

Does G={1) contain a multiplicative identity element I
YES, I

mult

‘A = A, for all A.
1°1 ?2=? 1°1 ?=? 1 VYes.

Does G={1) contain an inverse element A' for each element A
in +ha en+9

il

YES, A'=1l.
PROOF:
AA' = A'""A =1

mult’

for all A.

1°1 ?=? 1°1 ?=? 1 Yes.

Is G={1) commutative?

YES.
PROQF':
A°B = B°A, for all A and B.
©1°1 ?=? 1°'1 VYes. -

Is the multiplicative identity element I ... of F called the unit
element and denoted by 17
YES, previously shown in F=G=(1}).

Therefore, definition 2, part b has been verified.

So far we have shown that G={0,1} is a commutative group under
modulo~-2 addition AND G=(1) is a commutative group under
multiplication. We have also shown that the additive identity
element I, is denoted by 0 (zero) and that the multiplicative
1dentity tiement I Lt is denoted by 1 {(one). To prove that F={0, .L)
is a field, we now only have to prove that multiplication is

distributive over modulo-2 addition.
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Is multiplication distributive over modulo-2 addition?
YES.

PROOF:

A°*(B+C) = (A°B)+(A°C), for all A, B, and C.
0°(0+0) ?=? (0°0)+(0°0) VYes.

0°(0+1) ?=? (0°0)+(0°1) VYes.

0°(1+0) ?=? (0°1)+(0°0) VYes.

G°(1+1) ?=? (0°1)+(0°1) Yes.

1°(0+0) ?=? (1°0)+(1°0) Yes.

1°(0+1) ?=? (1°0)+(1°1) Yes.

1°(140) ?=? (1°1)+(1°0) Yes.

1°(1+1) ?=? (1°1)+(1°1) Yes.

Therefore, definition 2, part c has been verified.

Therefore, since definition 2 was satisfied, the set (0,1} is a
field F={0,1) of two elements under modulo-2 addltlon and modulo-2

"“"1*"‘“1’"""”‘“ Remembeg, a field F consists of at least two
elements: the additive identity I and the multiplicative
identity I_ .. This modulo-2 field is t%e minimum field of finite

number of elements that we talked about earlier. This modulo-2
field is usually called a binary or 2-ary field and it is denoted
by GF(2). The binary field GF(2) plays a crucial role in error
correction coding theory and is widely used in digital data
transmission and storage systems.

1.4 EXTENSION FIELDS GF(2")

Since we now know the underlying algebraic structures to perform
GF(2) arltnmetlc, let us talk about extension fields. We are
interested in prime finite fields called Galois fields GF(P). 1In
our previous binary operation example we had the minimum number of
possible elements which comprised GF(2). Extension fields are
GF(P") where m=2,3,4,... With the desian of error correction
coding based systems, we are interested in binary operations.
Therefore, we will mainly speak of binary Galois fields GF(2) and
the extended binary Galois fields GF(2") from now on. -

1.4.1 Primitive Polynomials p(x)

Polynomials over the binary field GF(2) are any polynomials with
binary coefficients; they are binary polynomials. Each of these
polynomials, denoted as f(X), is simply the product of its
irreducible factors, i.e., f(X) = FACTOR0 FACTOR,; ... 'FACTOR . We
can create an extension field by creatlng a prlmltlve polynOﬂlal
p(X). A primitive polynomial p(X) is defined to be an irreducible

hlnary pn’l\rnnmw:\'l of Rogrco m ""‘;lCh divides X1 for n = P'=1 = 2Mm_1
and which does not divide X'+1 for i<n. Once a primitive

polynomial p(X) is found, then the elements of the Galois field can
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be generated. Any primitive polynomial p(X) can construct the p"=2"
unique elements including a 0 (zero or null) element and a 1 (one
or unity) element. A degree m polynomial f(X) over GF(2) is"
defined to be irreducible over GF(2) if f(X) is not divisible by
any polynomial over GF(2) of degree greater than zero, but less
than m. Let us now test to see if the following binary polynomial
f(X) is a primitive polynomial p(X). We must show that it is both
an irreducible polynomial and also divides X"+1 appropriately.

First, let us test to see if f(X) = X*+X+1 is irreducible.
0%+0+1

(0°0°0°0)+(0+1) = (0°0) *(0°0)+(1)
(0) *(0)+1 = (0)+1
1

£(0)

wunnn

0

Therefore, (X+0)=(X-0) is not a factor (0 is not a root).
1%+1+1 :

(1°1°1°1)+(1+1)

(1°1) *(1°1)+(0)

(1) * (1)

1

winrunu

Therefore, (X+1)=(X-1) is not a factor (1 is not a root).

Since a factor of degree one does not exist for this degree four
f(X), then factors of degree three also do not exist for £(X).
This fact is shown as follows:

£(X) = XMX+1 #  (XB+...) (X+...)
(X+...) is of degree one and is not a factor. Therefore, if
(¥>+...) is irreducible, then it is not possible for (X¥*+...) of

degree three to be a factor.

Next, we_should try to find a factor of degree two.

X2 = X°X
X *X+0X+0

X *X+(0+0) X+ (0°0)
(X+0) (X+0)

(X+0)

mwwunu
!
‘

Therefore, X2 is not a factor because (X+0) is not a factor.
X241 = X°X+1

X X+0X+1

X X+ (1+1)X+(1°1)

(X+1) (X+1)

(X+1)2

brnonn
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Therefore, (Xa+1) is not a factor because (X+1) is not a factor.
X2+X = X X+X

X X+1X+0

XX+ (0+1)X+(0°1)

(X+0) (X+1)

Therefore, (XZ+X) is not a factor because (X+0) and (X+1) are not
factors. \ ~

Now we need to determine if X?+X+1 is a factor of f£(X) = X*+X+1.

Is X%+X+1 a factor of f£(X) = X‘+X+17?

1
: X2 4+ X +  X°4X+1
XX+ x+1 [ % + X+ 1
X+ x2+ %
X+ X%+ X
X+ x4+ x
1
Remember in GF(2) arithmetic, the additive identity of an element
is that element itself. Therefore, subtraction in GF(2) is
equivalent to_ addition in GF(2)!! From the above example,
(X4) = (X*4+%3+x?) = (x:) + (X4+X3+X%) = xX*4+X4+%X3+X? = X>+X2; then bring

down the X to form X'+X*+X and so on like we usually do division.
Most handheld calculators will not help you here!

Since there is a non-zero remainder, X?+X+1 is not a factor of
f(X). Since there are no other possible second degree factors to
check, there are no second degree factors which divide f(x).

Since no factors of degree less than f(x) could be found for this
binary polynomial f£(X), f(X) = X*+X+1 IS IRREDUCIBLE.

Since we have shown that f(X) is irreducible, we must now show that
£(X) = X4X+1 divides X™1 = X'+l where n = P"-1 = 2"1 = 15 and
that f(X) does not divide X'+1 for i<n. This proof will show that

this irreducible polynomial f(X) is a primitive polynomial p(X).
So let's run through a few iterations. Let us start with X'+1 of
order higher than f(X).

X24X+1
X +  X4X+1
Xy =xt+x+1 | X+ +1
X+ X2+ X
X+ X + 1

The remainder of this division is not zero and therefore £f(X) does
not divide into X’+1. So let us try the next higher value for i.
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X3+X2+1
X2 +  X%4X+1
£(X) =x+x+1 | x5+ + 1
x5 + X3 + x°
X + X° + 1

Again the remainder of the division is not zero and therefore f(X)
does not divide X%t1. 1In a like manner f(X) does not divide X'+l
for the remaining values of i (i=7,8,9,...,14) until i = n = 15 =
2™-1. Let's show the results of this division.

X kB X w54 ¥4+ 41

f(X) =x*+x+1 | xP +1
X' +1
0
Notice_there is a zero remainder; £(X) = X*+X+1 does divide XM+1.

Therefore, since we have shown that this irreducible f(X) divides
X"+1 and not X'+1 for i<n, THIS IRREDUCIBLE, BINARY POLYNOMIAL f(X)
IS ALSO PRIMITIVE; p(X)=X‘+X+1.

1.4.2 Field Symbols of

Since we have a primitive polynomial p (X)=X*+X+1 of degree m=4, we
can now generate our Galois field GF(P") = GF(2") = GF(2%) = GF(16)
from our field generator polynomial F(X)=X*+X+1; F(X) can simply be
any primitive polynomial p(X) of degree m. Since we want to
generate the GF(2‘)=GF(16), we need any fourth order p(X).

To construct the field, let us take our field generator polynomial
F(X) and perform a recursive process.
Let me first refer back to GF(2). Notice that if we add the unity
symbol 1 to the highest symbol in GF(2), which just so happens to
be 1 also, we get the lowest symbol 0. It is recursive in the
sense that it wrapped around, started back over from its highest
symbol to its lowest symbol:
0
0+1

0 The lowest element.

1 Add the unity element to the lowest element and the
result is the element 1.

c Add the unity element to the previous result and we
are back to the lowest element.

I

1L
i Sy

1
S

Now let's use this_ interesting fact along with a newly introduced
element, alpha a=a'. af (read as alpha-to-the-i) will denote each
individual element within our GF(16). So in order to develop our
field (or alphabet), set '"the primitive element agX)", often
denoted simply as "a", equivalent to OX™'!' + 0X™2 + ... +
1X + 0 = X. We will complete a recursive multiplication process
similar to the previous GF(2) addition example. What we will do is
keep taking consecutive powers of "the primitive element alpha"

~17— MSC-21834



until the field elements start to repeat.

Because we are using the extension of GF(P)=GF(2), the first P=2
elements of GF(P")=GF(2") are the same as GF(P)=GF(2); i.e., the
null and unity elements in GF(2") are the same as the null and
unity elements of GF(2). Therefore, a® =0 =0 and o® =1 ="1.

0=20 —_> 0 =0
1 =1 —_ 1 =1

Now we set a(X) = a = X to obtain the 4-tuple j;X*+3j,X*+j,X+j, for
each element (or symbol) a' of GF(16): .

a =X —_> a =X
@’ = a'a = X'X = X2 —> a? = x2
@ = a'a? = X% = X3 —> a3 =X
et = a'ad = X°X3 = x4 = 27 —> af =22

h han ¢“ into the appropriate m-tuple, i.e.,
e

C e X
the appropriate 4-tuple? Well, we simply take the modulo function
of the result, e.g., a* = ¢'a® = X*X* = X* = X* mod F(X). One of the
ways to perform this modulo function is to set our fourth degree
F(X) to zero and obtain the 4-tuple equivalent to X*. Working this
out we obtain

~

frj o8

3
o
ct
o
)
i.
@
€L
C
o
0
£
ot
o

F(X) = X%4+X+1 0

X = =X=1 = (=X)+(-1) = (X)+(1) = X+1
Therefore, a* = a*a® = X'X3 = x* = X* mod F(X) = X+1. It should be
noted that @ = 0 = 0 mod F(X) = 0, ¢® = 1 = 1 nod F(X) = 1,
¢l =a= X = X mod F(X) = X, a® = X2 = X2 mod F(X) = X2, and
o = X? = X° mod F(X) = X’. Let us continue this recursive process
by doing a little algebra.
a* = a'a® = x*x3 = X* = X* mod F(X) = X+1 —> o = X+1
@ = a'a® = X(X+1) = X%+X —> & = XX
a® = a'a® = X(x%+X) = X*+x? —>  af = x%x?
or or -
a® = a?'a® = X%(X+1) = X+x? a® = X3+x?
ol = a'a® = X(X34X?) = X433 = (X+1)+%3 —> o = X34X+1
or or
o’ = a?'a® = X¥(XH+X) = X4%° a’ = X3+x+1
or or
al = a3'a® = X3(X+1) = X+x° ol = x34x+1

In the same manner the following are obtained:

a® = x%+1 ol = x3+x%+x o = x3+1
o = X4X a'? = X3+X%+X+1
all = X24+X+1 ald = XS'{‘XZ'*'I
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Notice that the recursive process repeats itself once we create
more than the 2" unique field elements. Let's show this repetition
by examples.

al® = ara’® = x(X3+1) = X4X = (X+1)+X = 1 —>  a® =% = 3
a'® = ara® = x(1) = X , —>  a% =4 =¥
a' = ara'® = X(X) = X? —> a7 = g% = 2
ete.

This is our finite field made up of 2" unique symbols generated
from F(X) using the primitive symbol alpha a(X) = X' = X. These
unique symbols are labeled as 0;1,a,a?,...,a™'. It should be noted
that sometimes the 0 symbol is denoted by «™®, 1 by 2°, and a by a'.
The remaining symbols (e?,a, ...,a"") are always denoted the
standard way.

Table 1.4.2-1 summarizes the field representations so far.

TABLE 1.4.2-1. - GF(16) ELEMENTS WITH F(X)=X‘+X+1 USING a(X)=X

GF(16) Power Polynomial
elements representation representation
0 0 0
i 1 1
x X X
a? X2 x?
o x3 x3
at x* X+1
o’ x° X2+X
a® X8 x34+x2
a’ x7 X3 +X+1
a® x8 X2 41
o’ x? X +X
Q‘w X10 X2+X+1
a'l x" X3+X%+X
al'? x12 X3+X%+X+1
a3 x'3 X3+X2 41
a"’ Xil. XS +1
(aP=a’=1) [XP=x"=1) [ 1)
[a'é=a'=a) [X'¢=x'=X] [ X ]
17 17_v2 2
[a'=a" ] (X=X ] [ X ]
[ etc., ] { etc. ] i etc. ]

The modulo method that we are using to develop the field elements
a’ can be performed directly from a(X) med F(X) =
(i th?XlHLX+io) mod F(X). The modulo function 1is a basic
ma%hematical function; A mod B is simply calculated by dividing
A by B with the result being the remainder. The field generator
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polynomial is still F(X) = X'+X+1.

0 =0 = 0 mod F(X) = 0
1 =1 = 1 mod F(X) = 1
a =X = X mod F(X) = X
a? = (X)2=X2=X2 mod F(X) = X?
@@= (X)? =% = x> mod F(X) = x°
o = (X) = X* = X* mod F(X) = 2?
Calculation of X* mod F(X):
X+1
1 +" F(X)
F(X) =x+x+1 | %
X+ x+ 2
X + 1
- X + 1
a* = REM [1 + ——— ] = X + 1
F(X)

Therefore,

(X)* = x* = X* mod F(X) = X+1

In the same manner the following were calculated and verified:
@ =X = X° mod F(X) = X2+X

a® = x5 = x4 mod F(X) = x3+X2

a’ =X’ =X’ mod F(X) = X3+X+1

a® = x% = x® mod F(X) = x%+1

@’ =X =X mod F(X) = X3+X

' = X" = x' mod F(X) = X%+X+1

a' = x" = x" mod F(X) = x3+x%+X

a2 = X2 = X2 mod F(X) = X3+X%+X+1

@ = X% = X" mod F(X) = x3+x%1

e = x" = x% mod F(X) = X*+1

a® =1

' = x

etc. ) _

Although the first procedure is easier, we can follow either of
these procedures to obtain the same 2" symbols in the extended
Galois field GF({2") (see table 1.4. a—;). We should notice that if
we followed either procedure too long, i.e., solving for more than
27 symbols, then we should find that a® = a® = 1, @' = o' = q,
o = a2, ..., attiM = Uit md M _ i yhere j is an integer and
n=2"-1, In other words, continuing this procedure for more than
2" unique symbols will only result in repeating the polynomial
representation of the symbols.

Thus, we finished developing the field of 2™ unique symbols 1
GF(2"). THE FIELD GENERATOR F(X)=X*+X+1 AND THE PRIMITIVE ELEMEN

a(Y) X WILI, BE USED THROUGHOUT THE REMAINING CHAPTERS.

'-3:1
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1.4.3 Different Symbol Representations

The Galois field elements (or symbols) can probably be represented
in hundreds of useful and effective ways. Usually the vector
representation is the cleanest and the easiest to perform additive
calculations on. The vectors are simply constructed with the null
character 0 representing the absence of the X/ at a certain j=0,1,
2,...,m-1; i.e., the GF(2") field elements a' = jX3+3,X%+3,X+3,. The
unity character 1 represents the presence of the X!. It does not
matter which direction you choose to write the vectors as long as

yYou are consistent. For example, suppose F(X)=X‘+X+1 and a
primitive element X is given: Mathematicians usually prefer
writing o® = Xx*+X® = (0011) while application engineers usually

prefer ao® = X*+X® = (1100). In this tutorial, I will always be
consistent in writing the representations the way I usually do it:
o = x3+x2 = (1100).

TABLE 1.4.3-1. ~ EQUIVALENT ELEMENT REPRESENTATIONS

Vector
GF(16) Polynomial (or m-tuple)
symbols representation representation

0 0 (0000)

1 i (0001)

o , @ (0010)

a3 s a (0100)

a4 a (1000)

a5 ) a+l (0011)

a’ . o%+a (0110)

a; a;+a‘ (1100)

a a +a+l (1011)

a: s a? +1 (0101)

a a +a (1010)

aﬁ : a§+a+1 {0111)

a a’+a+a (1110)

at? +olta+l (1111)

ol a3+a?  +1 (1101)

a4 a3 +1 (1001)
[a=a’=1] ( 1] [(0001)]
[0W= 2=a] ( , @ ] [(0010)]
[a'f=a ] [ a ] [(01000)
[ etc. ] [ etc., ] t{etc.)]

So far I have presented three equivalent ways to represent a finite
field symbol. These ways are shown in table 1.4.3-1. Conpare
table 1.4.2-1 with table 1.4.3-1. Since we chose the special case
of setting the primitive element a(X) equivalent to X to generate
the field, we often will reprecsent the field elements a' in terns
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of the o/ instead of the XJ). We will denote the elements o' as the

symbols of GF(2"). These are common practices and they help to
simplify some of the notation in the following chapters; compare
table 1.4.3-1 with table 1.4.2-1. Because there are so many

possible representations for the one and only one GF(2") for each
m, many people prefer to simply denote the field elements as
symbols. A dictionary can define a symbol as an arbitrary or
conventional sign used in writing or printing which relates to a
particular field to represent operations, quantities, elements,
relations, or qualities; in other words, symbols are a part of the
notation used to represent the elements within our GF(16).
Similarly, sometimes polynomials are written in row matrix form as
a shorthand form. For example, if p(X)=1+X+X*, then p(X)=[11001].
Again, I will remain with the notation such that
p(X) = x“4x+1 = [10011].

The exponent (or power) and vector (or m-tuple} representations are
the most popular. Multiplication by hand is easily performed using
the power representation and addition wusing the vector
representation. However, they are all eguivalent representations.

The cyclic (shift register) nature of the elements in GF(2") is
interesting. Notice that o® is o* with one left shift and o«f is
either oa* with two left shifts or o with one; e.g., a° = arithmetic
shift left of (0011) = (0110). Since the most significant
binary-tuple of o® = (1100) is a "1", o’ is a* plus a® shifted left:
a’ = a* + arithmetic shift left of a® = (0011) + (1000) = (1011).
For details of how to work with shift register circuits {SRC),
pPlease refer to a text or later refer to appendices A and B.

Most people say there is one and only one primitive element to
generate the one and only one GF(2") for each m. They are correct;
there is one and only one a(X), but «(X) might be X, or X2, or X+1,
etc. TABLE 1.4.3-1 WILL BE USED THROUGHOUT THE FOLLOWING CHAPTERS

~ AS THE GF(16) NEEDED TO WORK OUR PRIMITIVE RS (15,9) EXAMPLE.

The standard way of generating the field elements o is by using

@(X) = a = X as demonstrated in this section. In chapter 3 we will
discuss RS encoding and we will need to be aware that "other"
primitive elements exist other than a = a(X) = X. Section 1.4.4

demonstrates there are other primitive elements besides a(X)=X. It
also indicates that the field elements a' can be generated using
these other primitive elements which may be helpful in some
implementations. If one does not care to read the next section,
then note the comments of this paragraph and skip over to
section 1.4.5.

1.4.4 Isomorphic GF(2™ Implementations
There is one and only one GF(2). There is one and only one
GF(2‘)=GF(16). In fact, there is one and only one
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finite field GF(2") for each m. However, not only are there many
different representations for each finite field element (e.g
m-tuple representation or power representation), but there are al

many ways to implement the elements of GF(2").

r .

Q

.
o
Lo

The earlier sections presented the most popular, most common, and
probably the easiest way of explaining the field generation. This
was done by setting the primitive element alpha a(X)=a to the
polynomial if@+ithdwx+i0 = X; X is a primitive element of GF(16)
using F(X)=X"+X+1. By generating the field, i.e., generating the
P"=2" unique symbols, the process assigned particular patterns of
1's and 0's (see the vector representation) to each of the GF(16)
symbols; the process generated one particular implementation of the
one and only GF(16). Now in this section, I want to communicate
that different implementations are often preferred when we try to
apply the field into physical systems and/or into computational

v evde A

sysitems.

All the possible primitive elements of the one and only one GF(16)
using F(X)=X*+X+1 are X, X%, X+1, X3+X+1, X>+1, X+X2+X, X3+X%+1, and
X3+1. When a primitive polynomial is used as the field generator,
primitive elements are the prime (or relatively prime) powers of
the primitive element o(X)=X to one less than the size of the
field. 1In other words, refer to table 1.4.2-1 and notice that o3,
>, &b a°, a% and o are not primitive elements because
3,5,6,%,10, and iz are not relatively prime to
g-1 = 27-1 = 15 = 3°5; @(X)=X, a(X)=X?, a(X)=X+1, a (X)=X3+X+1,
a(X)=X*+1, a(X)=X+X%+X, a(X)=X’+X?+1, and a(X)=X’+1 are all
primitive elements because 2,4,7,8,11,13, and 14 (from ¢?, o, o,
a8, o', a¥, and a' of table 1.4.2-1) are relatively prime to
g-1l = 15 = 3°5, It should be noted that all the non-zero,
non-unity elements of the GF(4), the GF(8), the GF(32), the
GF(128), and some of the other higher degree GF(2")'s are primitive
elements because the (g-1)'s are primitive, i.e., 3,7,31,127, etc.
are prime numbers,

Now, let me work an example of a GF(16) implementation different
than what is shown in table 1.4.2-1 (and table 1.4.3-1). For
learning purposes, let us use the same F(X) as used to generate our
field in table 1.4.2-1, but this time let us- use
@(X) = i;X+i,X%+i,X+i, = X% instead of a(X) = 1,1, X241 X+1, = X.
All right, set a(X) = X° and develop an implementa%ion different
than when a(X) = X' = X.

0
1

0
1

Now we set a(X)=X? to obtain the 4-tuple 33X343, X343, X434

Xz
X% mod F(X)
Xz

a
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X mod F(X)
X+1

|

w
Il

a‘a? ngx+1)
(x +X%) mod F(X)
(x ;nod F(X)) + (X% mod F(X))

X3+X

a* = a‘a? ngx3+x2)
(X2 +X*) mod F(X)
(X’ mod F(X)) + (X* med F(X))
(X2+X) + (X+1)
X2+1

hnuun

o® = a'at = X% (X%+1)
.LVZ\ mod
(x‘ mod F(X)) + (X% mod F(X))
(X+1) + (X
X24+X+1

wnnn

n
St

a® = a°a’ £X2+X+1)

X*+%3+X2) ‘mod F(X)
(x‘ mod F(X)) + (X’ mod F(X)) + (X2 mod F(X))
(X+1) + (X3) + (X}

V.L'!
V .LV .L +1

wnunu

o’ = a‘ab gx3+x?+x+1)
X+X*+x3+%?) mod F(X)
x ;mod F(X) + X* mod F(X) + X3 mod F(X) + X2 mod F(X)
(X‘+X) + (X+1) + (X)) + (X9
X3+1

munnnn

We can start to get an intuitive feeling that even though there are
many lmblementatlonq n'l aving around with the structure of the

fleld there is one and .o;xl‘yuone GF(2") for each m. Completing the
procedure for the remaining elements, we get the following

remaining implementation:

X3

X2+X
X3+X+1
@ X3+X

a® = x3+x2+X
a

a

.
o
mmnun

X+X%+1

S
ma

These régﬁlts are listed in table 1.4.4-1. Notice that the field
elements a' within table 1.4.4-1 have a different implementation
(or representation) than the field elements af within
table 1.4.2-1. Even though there are many possible implementations
of GF(16), mathematically there is one and only one GF(16). We
should notice that when we do NOT use a(X)=X as our prlmltive
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element, we will not develop a table similar to table 1.4.3-1,
i.e., we will NOT develop a' = jmqof"‘1 + jm_zoz""2 R P e
representations, but we can develop «a = jqu""1 + jquwz +

... + j,X + j, representations.

TABLE 1.4.4-1. - GF(16) ELEMENTS WITH F(X)=X“+X+1 USING a(X)=X>

Vector
GF(16) Polynomial (or m-tuple)
symbols representation representation
0 0 (0000)
1 1 (0001)
- a X2 (0100)
a? X+1 (0011)
a3 x3+x2 (1100)
at X2 +1 (0101)
o’ X2+X+1 (0111)
at KX+ X+1 (1111)
a’ X3 +1 (1001)
a® X (0010)
o’ x3 (1000)
a0 X2+X (0110)
o't X3 4x+1 (1011)
a'? X3 +X (1010)
a3 X3+X24+X (1110)
até . X+x2 41 (1101)
[aP=a=1] [ 1] [(0001)]
[a!=a'=a] D G [(0100)]
[a'=a? ] [ X+1] [(0011)]
[ etc. ] [ etc. ] [ (etc.)]

Not cnly do we have different primitive elements to cause
isomorphic implementations, but we also have a minimum of two
primitive polynomials for any GF(2"), i.e., a primitive polynomial
P(X) and it's reciprocal p_(X) where p.(X) = X" (x").

We keep talking about primitive polynomials, but did you know that
we do not even need to use a p(X) to generate the GF(2")? For
example, we could denerate the one and only GF(16) using the
irreducible, but non-primitive polynomial F(X) = X*+X3+X%+X+1 and a
primitive element a(X) = X+1. However, one of the reasons we
usually use primitive polynomials is that o(X)=X will always be a
primitive element of any primitive polynomial p(X).
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Some implementations consist of generating the field using one of
the previous implementations and then biasing the elements, e.g.
+h

e +haAa add £ h
generate the field and then to obtain the implementation of how

1's and 0's are assigned to each element, set amJ = a&%kf where

i=-»,0,1,2,...,2™2 and j is an integer.

o~

Besides all these implementations there a

__________ these ementations t! er
polynomial base, i.e., consecutive powers of the
There are other possible bases which are usefu
and/or physical system implementations.

» manv
lally

pr
1.

re. We used a

e
itive element.
in computations

m
i

.

It should be noted that most people prefer to just say there are
many different representations for each unique GF(2") for each m.
Simply try to use a standard representation which makes the most
sense to you, but remember your system implementation.

Overall, there is one and only one GF(2") for each m. There are
many implementations for each GF(2"). Some implementations are
easier to understand, some are more useful in computational
implementations, while some are more useful in physical system
implementations. FROM THIS POINT ON, REFER ONLY TO THE MOST COMMON
IMPLEMENTATION OF GF(16) FOUND IN TABLE 1.4.3-1.

1.4.5 Addition and Subtraction Within GF (2™

Addition in the extended Galois field GF(2") can be performed by
one of two methods. The most common method is by exclusive-oring
the elements' vector representations position by position. This is
simply performing modulo-2 addition, we are not using carry

arithmetic. The least common method is Dy duu;ng their po;ynomlal
representations together. It is interesting to realize that these

two methods are equivalent! For example o®+a’ = (a?+1)+(c%+a) =
a+l = a* is equivalent to a® XOR ¢® = (0101) XOR (0110) =
(0011) = ¢*. Remember that subtraction and addition are equivalent

in GF(2™) arithmetic (i.e., a®+0® = (e®+1)+(a’+ta) = (a*+a?)+a+l
(0)+a+1 = a+l = o* is equivalent to a® XOR &° = (0101) XOR (0110)
(<0 XOR 0><1 XOR 1><0 XOR 1><1 XOR 0>) = (<0+0><1+1><0+1><1+0>) =
(0011) = o*).

1 o).

NV A

Using the vector addition method:

a* = 0011
a® = 0101
a* XOR a® = 0110 = o°
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TABLE 1.4.5-2. - GF(16) ADDITION/SUBTRACTION TABLE USED

-] 0§ 1} 2] 3| 4| 5] 6} 7] 8] 9]10f11]212]13]}14
Ol-c0! 4! 8124} 2111012231 ol 21 71 sl12f111}) sl 23

1 ~o] 5| 9! 0 2}11|14j10] 3| 8} 6]13]112]| 7

2 —o| 6110] 1) 3112} ol11] 4] 9| 7114113

3 —~0f 7111} 2} 41131 1112] 5110] 8] O

4 -o| 8{12f 3] 5]14}| 2113! 6]11| 9

5 —©0| 9]13] 41 6| O] 3114] 7112

6 —©/10[14) 5] 7] 1| 4] o] 8

7 -0f11}f 0] 6| 8] 21 5] 1

8 =0f12) 1] 7] 9| 3] 6

9 ~0113] 2! 8110 4
10 -0]314] 31 9]11
11 -o| 0] 4110
12 =0} 1! 5
- 13 -00| 2
14 -0

="

1.4.6 Multiplication and Division Within GF (27

As in the case of addition and subtraction in GF(2™), we also
two methods to perform multiplication and division. The
common method is by summing the symbols! exponents modulo 27-

have
most
1 (or

modulo n) and the least common method is again the polynomial

method.

Using the exponent mod n multiplication methcd:

w
~N
il

5+2
7

R

]

a

Again using the exponent mod n multiplication method:

5+14

19

19 mod 15
4

R
R
I

Il
R R R

Another method of performing the modulo function for multiplication
or division is to keep multiplying or dividing by «'®, which is

unity, until we obtain a symbol within the finite field.

c!5+14

cx%?

19 mod 15

a'?/a'’ for a¥® = a¥% = o% = 1
4

a

Salh =

]
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Using the exponent mod n division method:

a5/a2 = a5a~2
= @t

Using the exponent mod n division method for an inverse symbol a’':
{
L
aSa 1
o5+ -14)
a’? ‘
-9 mod 15

a.
o®

Ll

aS/a14

I

1

Or we can again use the multiply or divide by unity method:
®/a' = St

= o>*(14)

= a'9

= o9 md 15
a’al’ for a” = " =" =1

Using the polynomial multiplication method:

o’a? = (a’+a)a?

alal+a'la?

a(2+2)+a(1+2>

ab+a’

= (i1 Yand
‘“ 1 -I-I LI~ 3

a+a+l

]

Another example using the polynomial multiplication method:

...... -2 1 4l LRl il iRl ATV R s

CZSCZM

(a’+a) (@*+1)
ald’+al+a'ad+a
a’+a+at+a

(a2+a) +al+ (a+l)+a
a+l

ot
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Using the polynomial division method:

oSa?

o (o2 ™d 15)

oS’

(e®+a) (a3+a%+1)
2p3+alal+al+alad+alalta
aP+at+al+a+ad+a
a’+at+al+a

(e’+a) +a3+a’+a

= o3 P

R
n
~
R
~
|

(LI | 1 I

Again using the polynomial division method:

5 -16

aS/aVo
=14 mod 15)

ﬂ

a (a”
a’a

(a?+a)a
ala+a’lal
a+a?

ab

Multiplication is ea511y performed by adding the exponents modulo
n and noting that ai‘e™ = (¢') (0) = 0. A multiplication table is
left as an exercise.

1.5 DIFFERENT ALGEBRAIC STRUCTURES

In Reed-Solomon coding we are only interested in Galois field
algebra. However, it is interesting to understand the overall

picture of structure. Table 1.5-1 summarizes the relationships of

-y E
all of the different algebraic structures constructed in order for

us to be able to construct the extension Galois field GF(2").
Notice that a semigroup is a subset of a monoid which is a subset

of a group which is a subset of a communicative (or abelian) group
and on and on up to a Galois (or -r1rn+;a\ field being a subset of an

LU Q LAV S e A diia T A AT LA AT LYy

extension fleld. Table 1.5-1 is edited from JPL publication 77-23,
"Review of Finite Fields: Applications to Discrete Fourier
Transforms and Reed-Solomon Coding", by Wong, Truong, Benjauthirt,
Mulhall, and Reed.
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TABLE 1.5-1.

Algebraic structure

Semigroup
Monoid
Group

Commutative or
abelian group

Ring

- RELATIONSHIPS BETWEEN ALGEBRAIC STRUCTURES

Properties

One operation, sey addition "+", closed and associative
Also with an additive identity element ladd

Also with an additive inverse element -A

Also commutative for addition "+n

Also with another t;peration, say nultip'lication uwen closed and associative.
Also addition “+" and multiplication "' are distributive,

Note: A ring is a commutative group under addition “+" and a semigroup under
multiplication »*»,
Commutative ring Also commutative for multiplicatfon n-u

Commutative ring
with unity element

Also vith the unity element 1 (one

multiplication »'»

~
-~
[+]
-3
i
po
-

Note: A commutative ring with unity element is a commutative group under
addition "+" and & monoid under multiplication # ",

Field Also every non-zero element has a multiplicative inverse A’1 and that AA'1 =1,
where 1 is the identity (or unity) element 'mult for multiplication v-n,

Note: A field is a commutative group under addition "+" and fts non-zero
elements form a multiplicative group.

Finite field or
Galois field

Also with finite number of elements

Also with the only possible finite fields GF(P™) where GF(P™) is the extension
field of GF(P), GF(P) is the finite field (or Galois field or ground field),
P is prime, and m is an integer

Extension field

1.6 SUMMARY

WassartiaNa

This chapter should have gone into enough detail to answer most if
not all questions about Galois field algebra. It did present
enough material to be able to thoroughly proceed and work the
following (15,9) RS coding example. Hopefully, this chapter
answered all the questions from those who are being introduced into
finite field algebra and coding for the first time. The ones who
are still interested in further study of coding mathematics would
be served by reading the coding bibles or referring to some other

authoritative text.

Now we should be ready to perform operations on block codes,
especially non-binary BCH, cyclic, and linear block codes known as
Reed-Solomon codes.
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CHAPTER 2
BLOCK CODES

Before we talk Reed-Solomon (RS), it is best to first talk about
its great, great grandparents called block codes. In this chapter
we start with a general block error correction coding system with
few specifics. Then in section 2.2, we construct a little perfect
(3,1) block code introducing terminology, concepts, and some
definitions. We then proceed into the next section where some of
the codes are defined and some of the ancestry is presented. 1In
section 2.4 we combine a random error correcting code with a burst
error correcting code. Also, burst error correction improvement,
block code modification, and synchronization are briefly discussed.
Section 2.5 discusses the error correction and detection domains
using the analogy of zones.

2.1 BLOCK ERROR CORRECTION CODING SYSTEM

In general, coding is taking k symbols as input to an encoder
producing n output symbols. These symbols are transmitted over a
channel and the result input into a decoder. The output of the
decoder is usually the decoded version of the original k symbols.
In general, n in respect to k can be >,=,<, and/or any function of
those. When n>k, we may have a system with some n-k additional
symbeols. An application of this can ke to add parity-check, a form
of redundancy, to the original data for error correction and/or
detection applications. When n=k we may have a scrambling
application. When n<k, we may have a compression application. In

increased communication reliability through error correction
capability with n>k."

We should also note that in coding we are not interested in the
"meaning”™ of the message in the sense that we can do something
earth shattering with these data. Rather, we are interested in the
sense that we can replicate at the output of the decoder what was
input to the encoder. Some data in, some corresponding data out.
Some particular garbage in, some corresponding garbage out.

In general, a block error correction encoding system is simply a
mapping of elements in an ordered set (denoted as a k-tuple) into
a unique, ordered set with more elements (denoted as a n-tuple):;
the encoding process annexes redundancy to the message. The idea
behind a block, error correction decoding system is simply a
mapping of the received n-tuple into its nearest, valid n-tuple
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(which corresponds to a unique k-tuple); the decoding process

removes the redundancy to recover the original message. If the
received n-tuple is correctly mapped into the orlginal encoded
n-tuple, then the decoded k-tuple is guaranteed to be the original

k -tuple. The procedure is that (1) the k-tuple is mapped into the
n-tuple, (2) the n-tuple is transmitted (or recorded), (3) the
n'-tuple (which is the n-tuple added with the channel error induced
by some type of noise) is received (or played back), and (4) the
k-tuple is then hopefully decoded from the n'-tuple by a mapping
algorithm.

In the encoding process for a systematic code, the k-fnn1n is
mapped into the n-tuple by taking the k-tuple's symbols (synonymous
to elements) and usually appending additional symbols for the
purpose’of error correction and/or detection. For a cyclic code
the additional symbols which are appended to the k- -tuple are
generated by taking the 1location shifted k- -tuple modulo the
generator.

If the error correctlng capability of the code is not exceeded,
then the decoder is guaranteed to correctly decode the n'-tuple
into the k-tuple. In other words, in a noisy communication channel
it is SOMETIMES possible to correct ALL the errors which occurred!
We can sometimes guarantee that the decoder's output will be
EXACTLY what was transmitted (or recorded)! If the error
correction capability is exceeded, then the decoder will usually do
one of two things; it will either detect that the error correction
capability was exceeded or it will decode into an incorrect set.
If the decoder decoded into an incorrect set, then a decoder error
results. If this decoder error cannot be detected, then it is an
undetectable decoder error. If the error correction capability was
sensed as exceeded, then the decoder might be designed to send an
automatic repeat request (ARQ) 51gna1 and/or pass the noisy

n-tuple, denoted n'-tuple, through the system. Also, if the code
is systematic, we can at least recover the noisy message, denoted
k'-tuple,. from the n'-tuple. For many applications, passing the
n'-tuple through the system is not desirable, e.g., possible
privacy concerns.

2.2 A PERFECT (3,1) BLOCK CODE

Let me explain a block coding system in another way. Let us use an
example. Assume that we want to transmit either an "on" message or
an "off" message. This can be realized in transmitting a binary
symbol (or a digital bit; be aware that many people define "bhitg"
as a measurement unit of "information®"). A binary symbol with a
1" is used to indicate the "on" and a "0" to indicate the "off".
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We send either 1 or 0 out over our communication channel and
hopefully receive at our destination the same message that we had
sent. However, sometimes we don't receive the same message that we
sent because channel noise and even other noise was able to
infiltrate our system and inject errors into our message. This is

where error correction coding might come in.

D
D

Lo

~ey ol ol =]
HCoT TLLWV

¢
Error correctio es u

r o we
as communication or as data storage engineers can obtain "reliable
transmission (or storage) of data." Claude Shannon in 1948

demonstrated that not only by "proper" modulation and demodulation

rm A3 -~
of information, but alsc by "preoper" encoding and decocding of

information, any arbitrary high, but non-unity, probability of
decoding the received block of data (the units are symbols) into
our original information (the units are bits) can theoretically be
realized. The real problem is to approach Shannon's 1limit by
designing algorithms and then applying these algorithms and theory
into practical systems.

- 0

We don't get something for nothing. We must either decrease our
information rate and/or decrease the energy associated per
transmitted symbol and/or increase our power and/or increase our
bandwidth. Often such considerations as antenna power, bandwidth,
and the modulation technique used are already cast into concrete.
So the communication system with error correction capability is
often designed at the expense of reducing our information rate and
adding a little power to operate the additional hardware. However,
often this power is negligible compared to other alternatives such
as increasing the antenna power. Also, notice that coding does
require a serial insertion into the communications channel and thus
will add to the propagation delay. However, this delay is usually
negllglble compared to the other propagatlon delays in the system.
And then there are the size and weight requirements that need to be
addressed.

reasing the information rate, we can increase the symbol rate
and keep the information rate constant. When I generally think of
communications systems, I usually think of them as a function of
only two parameters: signal-to-noise ratio and bandwidth. If we
compare an uncoded sys
information rate (i.e., bits per second), the coded system will
have a higher symbol rate at the output of the encoder (i.e.,
symbols per second) than the uncoded system. 1In other words, the
coded system spreads its signal energy over more transmitted
symbols within the same bandwidth. The energy associated with each
coded symbol is 1less than the uncoded symbol. Therefore, the
symbol error rate of a coded system will be greater than an uncoded

system. If the decoding of an error correction code has a better

Wait one moment. 1Instead of keeping the symbol rate constant and

3 +- Fman el -
tem with a coded system for the same
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performance than an uncoded system (i.e., the coded system having
redundancy overcomes the higher symbol error rate better than the.
uncoded system with its lower symbol error rate without having
redundancy) at falrly high-to-low bit error rate regions, then we
obtain a coding gain in signal-to-noise energy. If the resultant
code has a worse performance, then it is a bad error correction
code. An error correction coding system will have worse

AaA ok o=
performance at very high bit error rates than an uncoded system.

However, in an error correction system we can fairly easily adjust
the coding gain to whatever we need for the operating regions.

)
b
itional

-l-

’
not require any add

In summary. error correction cod ny

in e
antenna power or bandwidth; a coding gain can be obtained over the
same bandwidth by either decreasing the information rate or by
modulation techniques (which are usually more complicated and are
designéd to spread the available signal energy over more symbols) .

Error correction coding can even cause the overall power and

bandwidth consideratiqns to be relaxed.

11y as

may

P i3
aite lTo]

Referring back to our case of the "on" and "off" messages,; let us
now add redundancy to the message. (Sometimes the messages are
called the data field or the information field. Be aware that
different people mean different things when they talk about
"information:" I will refer to the messages as either messages or
as data fields.) Instead of transmitting a 1 to indicate "on" and
a 0 to indicate "off," let us use more than this minimum of one
binary symbol to represent these two messages. Let us now say that
we want to use three binary symbols to represent these same two
messages; we are adding redundancy. There are eight possible
states, but we are only going to transmit two of them.

Let us develop this simple block code as an example to demonstrate
coding. Let us randomly pick say a three symbol sequence of binary
code symbols to represent "on." Let us choose [101] for "on."
Usually to construct the most efficient code, choose the
representation for "off" to be as different as possible from [101].
Let us then represent "off" as {010]; {010] is the code word for
"off." A code word pertaining to a block code is defined to have
a block length of n symbols representing (or corresponding) to the
message length of k symbols where each unique code word is unique
to each message. 1In this example, the code word [101] has a block
length n=3 symbols, a message length k=1 symbol, and the one and
only [101] is unique to "on." The number of 1's in any binary word
is its weight w. The number of positions which are different
between two words of the same length is its distance d. In this
example the weight w of the word [101] is two and the weight w of
the word [010] is one; w[101]=2 and w[010]=1. Also, the distance
d between the words [101] and [010] is three; d4[101,010]=3. Notice
that they differ in +three 1locations. Also, notice that
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d[101,010] = w[101+010] because of modulo-2 addition. In this
example d[101,010] Jjust so happened to egqual w[101] + w([O0l10];
generally 4&{xxx,yyy] # w{xxx] + w{yyy]. The minimum distance 4,
is defined to be the distance between the two closest code words.
Since we only have two code words in this example,
d. = d[101],010] = d[010, 101] = 3. By representing a message with
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we are addlng redundancy to the message. [101] and [010] are code
words that label our messages "on" and "off" respectfully. Now

notice that all of the other possible words, denoted as non-code
words, are invalid in that they will NEVER (never say never) be
transmitted; ([000], ([001], [011], [100], [110], and [111] are
denoted as non-code words. However, in a noisy channel it is
likely to receive these invalid words. This is due to the noise

corrupting our original code word representing our message.

Now let us try to decode the received word in the presence of
noise. If we receive a [101] we will assume that we transmitted
"on." If we receive a [010] we will assume that we transmitted
"off." If we receive anything else we will pick the closest match
to either [101] or [010])}. There, that is our decoding algorithm;
that is maximum likelihood decoding (MLD). A maximum likelihood
decoder (MLD) is defined as a decoder whose code word estimate is
determined by maximizing the conditional received word probability
given that a code word has been transmitted. It also assumes
additive white Gaussian noise (AWGN) and a memoryless channel. A
MLD simply decodes the received word into its closest code word
measured by its symbol distance d.

But who is to say that errors cannot change one transmitted code
word into being closer to a different code word, or even being that
different code word itself? Actually errors can, but the
probability of it doing so can be made extremely small in
comparison. The idea of receiving a non-code word which is nearest
a single code word and then proceedlng to decode it to be the

message represented by that code word, is cailed HMLD.

If we receive [101] we decode it into Yon" and if [010)] then "off."
Seems like a given, does it not! It seems as if no noise was
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not; there is no way that the decoder can absolutely know. For
example: what happens if we want to communicate "on" over our
communication channel? Well, we transmit [101]. But now let's say
that noise infiltrated our system and our receiver received [010]:
an error in each location just happened to occur. The decoder
takes the [010] and says that it is identical to the representation

for "off." It then proceeds to incorrectly decode the [010] into
the message "off" and pushes it down the line; our decoder seens
happy. An undetectable error has just occurred; it is called an
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undetected decoding or decoder error. The reason why we still go

ahead and use this MLD idea is that the probability of having three.

errors in our received code word is much less than having two
errors, is very much less than naV.iﬁ(j one error, and is very, very
much less than having no errors. Equivalently, the probability of
having no errors in our received code word is much more than having

one error, is very much more than having two errors, is very, very
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much more than having three errors, and so forth. Since our

decoder only has the word it received through our noisy coding
channel at its disposal, it can figure out all the possible

combination of errors to get it to any of the code words. Using
MLD the decoder selects the combination of errors which has the

fewest number of errors necessary to get it to the nearest code
word. This pattern of errors is the MOST PROBABLE ERROR PATTERN,
but MLD does NOT guarantee it to be the ACTUAL ERROR PATTERN.
Since no one has come up with a better idea to determine the
estimate of the noise and that MLD can be proven to be optimum in
an AWGN channel, MLD is still the best method to follow. MLD can
give excellent results.

Table 2.2-1 is given to demonstrate why this simple block code
example can correct one error symbol or fewer in its block length
of three and no others. Notice that more than one error symbol
within a received word results in an improperly decoded code word.
This is because all the possible received patterns (or words) have
already been mapped into their correct code words using the MLD
principle. Since the probability of having less errors is much
greater than having more errors, the received patterns that have
the least number of errors are mapped first. We then map any
remaining patterns that have more errors until we run out of
possible received patterns to map. For our example, there are no
remaining received patterns that correspond to more than a single

error symbol.

Also notice that in table 2.2-1 ALL received words with more than
one error symbol are replicated in the received words with less
than or equal to one error symbol. Since ALL single or fewer error
symbols can be mapped correctly into its nearest code word and
since NOT ALL (in fact NONE in this example) double error symbols
can be mapped correctly into its nearest code word, this particular
code is a single error correction (t=1) code. Since this code
makes undetectable decoding errors for all error symbols greater
than t symbols, this code is perfect. There's nothing all that
great about a perfect code. 1In fact, a perfect code utilizing all
of its error correction capability is not necessarily a good code
in terms of communication efficiency. All the syndromes are used
for error correction capability and thus none are reserved for
error detection capability:; perfect codes have no error detection
capability unless some error correction capability is forfeited.
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A code with minimum distance d:, can be used as a t error
correcting, t, additional error detecting code if and only if

2t+t +1 = d If we use all the error correction capability of
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as discussed earlier. If we decreased the error correction
capability of our single error correcting example by one, i.e.,
toew = tmq"l = 0, then tmnw = dmm’Ztmd'l = 2; in other w?rds this
results in a zero error correcting, double error detecting code.

When we decrease the error correction capability of a perfect code,
we usually denote the resultant code as a non-perfect code.

TABLE 2.2-1. - DECODED WORDS AS A FUNCTION OF ERROR PATTERN

- Received word Decoded code word

Number of Error [101] / [010} [101] / [010]
errors word . transmitted transmitted
0 [000] [101] / [010) [101] / [010]

1 [100] [001] / [110] [101] / ([010)

1 [010] [111] / [000] [101] / [010]

1 [001] [100] / [011] [101] / [010]

2 [110) [011] / [100) [010] / [101]

2 [011) [110] / [001] [010] / [101]

2 [101] [000] / [111] [010] / [101}

3 [111] [010] / [101] [010] / [101]

All (n,1l) block codes can be perfect if n is odd; this example is
a perfect (3,1) block code. If this example was a non-perfect
code, like most others, then the code would have some error
detecting capability without sacrificing any error correction
capability. Error detection is obtained by recognizing that some
syndromes are invalid in that they are never to be used. More on

syndromes will be presented later.

In this example, code symbols are only one digital bit (or binary
symbol) in length. Therefore, this example is a binary block error
correction code.

This particular (3,1) block code is a random error correcting code;
it can correct some bit errors distributed randomly within a bit
(or code symbol) stream. It is not a burst error correcting code;
it cannot correct bursts of errors which are random errors that
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occur very, very near to each other.

This particular (3,1) block code is not a linear block code.’
Linear block codes have the property that every code word summed
with any code word is a code word. Notice that all binary based
linear block codes have at least the all-zero code word because any
code word added to itself is the all-zero code word using modulo-2
arithmetic. This {3,1) block code doesn't have the all-zero code
word and therefore is grounds enough to ostracize it from being
linear. Also notice that if we take all the code words in our
(3,1) block code and sum them all together we receive the word
11113. {111] is not a code word; this is also grounds for
ostracism. Death to non-linear codes!

In thig'example any double or triple error pattern can decode into

its nearest code word, BUT the decoder would not be able to decode
it into the correct code word Notice that if the decoder digd try
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to correct the double and triple error patterns into the original
code word that was transmitted, then the no error case and the
single error cases would not be able to decode correctly. Using
MLD we will correct all single and fewer errors. Since this
example is a perfect code, any pattern of more than t errors will
cause decoder errors. Summarizing for this perfect code example,
all errors look like either a single error or no error because the
decoder is using the MLD principle. Since all error patterns with
one or fewer errors decodes into the correct code word, we have a
single error correcting code. Since it happens to be a perfect
code, more than t errors cannot be decoded correctly or even
detected; more than t errors in a perfect code produces

undetectable decoding errors.

2.3 LINEAR BLOCK CODES

Figure 2.3-1 presents the relationships between many different
types of codes. From this diagram we can see how RS codes relate
to other error correcting codes. There are two types of error
correction codes: tree codes and block codes. Even though we can
sometimes combine them in certain ways using characteristics of the
other, we still have only two types of error correction codes.
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TREE ERROR CORRECTION CODES

CONVOLUTIONAL CODES

BLOCK ERROR CORRECTION CODES

LINEAR BLOCK CODES

CYCLIC COOES

PRIMITIVE,
G-ARY BCH CODES

NON-PRIMITIVE,
q-ARY BCH CODES

NON-BINARY BCH COOES

NON-BINARY BCH CODES

REED-SOLOMON CODES

REED-SOLOMON CODES

REED-SOLOMON CODES
over 6F(2™

REED-SOLOMON CODES
OVER GF(2™)

Figure 2.3-1. - General Venn diagram of error correction codes.

Reed-Solomon codes are non-binary, BCH, cyclic, linear block error
correction codes.

The major characteristics of 1linear block codes are a block
architecture, optional systematic structure, and all code words are
sums of code words. It has a block length of n symbols and a
message length of k symbols. If the code is systematic, then it
also has an unaltered data field of k symbols independent of the
associated parity-check field of n-k symbols.

Cyclic codes are a subset of linear block codes. They have the
same characteristics as other linear block codes, but with an
additional characteristic; every cyclic shift of a code word is
also a code word. Cyclic codes are easier to encode and decode
into systems than 1linear block codes. The encoding operation
(similar to the first decoding stage) can be implemented into
either a SRC or a linear sequentlal circuit. Also, the decoders'
implementations become more practical due to the increase in the
cyclic codes' algebraic structure.

P-ary BCH codes are a special case of g-ary BCH codes which are a
subset of cyclic codes. P-ary BCH codes' code word symbols and
code word generator polynomial g(X) coefficients are from GF(P) for
P being a prime number. The field elements and the code word

generator's roots of P-ary BCH codes are from GF(q)=GF(P")




for g being the order of the field and m being an integer greater
than one. They have the same characteristics as other cyclic
codes, but with an additional characteristic; P-ary BCH codes can
fairly easily be implemented into systems with any error correction
capability t of t symbols along with particular choices of the
message length k of k symbols and the block length n of n symbols.
Also, BCH <codes can be either prlml tive or ﬂOi‘l-pflmllee.
Primitive BCH codes are defined as codes whose block length n is
P"-1. Non-primitive BCH codes have a block length n other than

n=p"™1; e.g., a shortened BCH code is a non-primitive code because

$ , 3 (]
it has a shorter block length n which divides P"-1. 1In general,

designing encoders and decoders for multiple error correcting P-ary
BCH codes is easier than for many other cyclic codes.

Blnarv 'BCH codes are the most often used of the manvy P-ary BCH
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codes, “"binary BCH codes are simply 2-ary BCH codes. The code word
symbols of binary BCH codes are binary, they are from GF(P)=GF(2).
The field elements used in binary BCH codes are non-binary; they
are from GF(q) = GF(P") = GF(2") for g being the order (or size) of
the field and for m being an integer greater than one. Also, the
code word dgenerator polynomial g(X) has binary (i.e., 2-ary)
coefficients from GF(P)=GF(2) and the code word generator's roots
are from GF(P")=GF(2"). A t error correcting (t<2™'), primitive,
binary BCH code has the following parameters:

block length: n = 2"™1 code symbols
number of parity-checks: n-k < mt code symbols
minimum distance: d, 2 2t+1 code symbols

These codes have some inherent error detection capability without
sacrificing any of the error correction capability. If some error
correcting capability is sacrificed for an additional error
detection capability t,, then the resultant t error correcting,
ty additional error detectlng (ty is an even number), primitive,
blnary BCH code would have the following parameters:

block 1eﬁgth: n = 2" code symbols
number of parity-checks: n-k < m(t+(ty,/2)) code symbols
minimum distance: dp, 2 2+t +1 code symbols

P-ARY BCH CODES ARE ACTUALLY g-ARY BCH CODES. Binary BCH codes are
actually a special case of g-ary BCH codes. Also, non-binary BCH
codes are simply all g-ary BCH codes which are not binary BCH

A S .

A t error correcting, g-ary BCH code (with the code symbols and the
generator's coefficients being from GF(q), the field elements and
the generator's roots being from GF(g°), and c being an integer
greatcer than one) has the following parameters:
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block length: n = g°-1 code symbols
number of parity-checks: n-k < 2ct code symbols
minimum distance: ’ d.;, 2 2t+1 code symbols

P-ary BCH codes can be derived from g-ary codes by simply setting
g=P to be a prime number and c=m to be an integer greater than one.
This means that for P-ary BCH codes, the generator's roots (and the
field elements) are from GF(g®)=GF(P°)=GF(P") and the generator's
coefficients (and the code symbols) are from GF(q)=GF(P). For
binary BCH codes the generator's roots (and the field elements) are
from GF(g°)=GF(P°)=GF(P")=GF(2™) ‘and the generator's coefficients
(and the code symbols) are from GF(q)=GF(P)=GF(2).

Now, I would like to finally talk a little more about Reed-Solomon
codes! RS codes can be derived from g-ary codes by simply setting
g=P" to-be a power of a prime number and c to be 1. This means
that for RS codes the generator's roots (and the field elements)
are from GF(q°)=GF((P")¢)=GF((P")')=GF(P") and the generator's
coefficients (and the ‘code symbols) are from GF(gq)=GF(P"). A
t error correcting, primitive RS code has the following parameters:

block length: n = g-1 = P"1 code symbols
number of parity-checks: n-k = 2t code symbols
minimum distance: dpin = 2t+1 code symbols

The code symbols of a binary based RS code are non-binary; they are
from GF(q)=GF(P")=GF(2"), not GF(q)=GF(P)=GF(2). For binary based

(i.e., P=2) RS codes, the generator's roots (and the field
elements) are from GF(gq°)=GF((P")¢)=GF((P")')=GF(P")=GF(2") and the
generator's coefficients (and the code symbols) are from

GF(q)=GF(P")=GF(2"). A binary based, t error correcting, primitive
RS code has the following parameters:

block length: n = g-1= 2"1 code symbols
number of parity-checks: n-k = 2t code symbols
minimum distance: din = 2t+1 code symbols

For a primitivp RS f‘_nr}p,i once the extension m and the base P are
determined, then the block length n is automatically set. Then
once either the error correction capability t or the message length
k is determined for a primitive RS code, the other is respectively
set. For example, if g = P" = 2" = 23 = 8 (P=2 denotes binary
based), then this can either be a (7,5) or a (7 3) or a (7,1) RS
code depending if t = 1, 2, or 3 symbols respectfully.

It should be noted that RS codes have very unique and powerful
features: RS codes satisfy the Singleton bound d.;, £ N-K+1 because

for a RS code, d., = 2t+1 = n-k+1. Therefore, RS codes are MDS or

synonymously called optimal. It is also worth pointing out that
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the block length n of a RS code over GF(q)=GF(P") can be extended
to either g or g+l1 while still maintaining the MDS condition.
Also, a (n,k) RS code can be shortened to be a (n-1l,k-1) RS code

I*Fnr 1 even and 1(1{'\ while malntuln'lng the MDS condition. In other

words, some non—prlmltlve RS codes are also MDS. Another nice RS
feature is that the designed minimum distance is exactly equivalent
to the actual minimum distance d;. i.e., 4,,=2t+l not d_. >2t+1.

Typically, when RS codes are designed into a system we use binary

based (P—2) RS codes. Just like any other linear block code, RS
codes can be either systematic or non-systematic. Usually if
systematic structure is easily implemented into the system and does
not decrease the coding gain, we do it. RS codes are not only very
powerful burst error correcting codes, but can also be powerful
random error correcting codes.

2.4 SOME MORE RELATED TOPICS

There are several other areas of the system with which the error
correction system must interface. We must be concerned with
choosing the correct code or combination of codes to most
efficiently meet or exceed the engineering problems of noise and
channel capacity. We must be concerned with the implementation
architecture and where the coding circuitry is located within the
system. We must be concerned with synchronizing to our message.
Besides these concerns and concerns which fall under these, there
may be other concerns to seriously consider. This section will
briefly address interleaving, modifying block codes, burst errors,
concatenation, and synchronization.

The error correction capability of burst error codes, concatenation
codes, and random error correcting codes can increase if
interleaving is performed. The purpose of block interleaving (in
regard to error correction coding) is to average out the bursts of

burst errors over several code words. Interleaving can be done by

e.1mn'|v Shuffllng the encoder's nnfnnf Irn- encoders! nn#-pnts) to an

1nterleave depth I. Instead of transmlttlng one code word followed
by another, we will transmit the first symbol of the first code
word, the first symbol of the second code word, ..., the first
symbol of the Ith code word. Then we will transmit the second
symbol of the first code word, the second symbol of the second code
word, ..., the second symbol of the Ith code word. Then we will
keep repeating this until the nth symbol of the first code word, the
nth symbol of the second code word, ..., the nth symbol of the It
code word has been transmitted. We then repeat this process by
taking another set of I code words and interleaving them the same
way. This algorithm is the usual method of block interleaving. If
the code is systematic, then all the consecutive (n-k)I parity-
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check symbols will follow all the consecutive kI message (or data)

symbols. The decoder must perform a similar operation of
de-interleaving (or de-shuffling). Besides block interleaving some
other wuseful interleaving algorithms worth mentioning are
convolutional interleaving (not related to convolutional codes) and
helical interleaving. In general, interleaving is simply

efficiently shuffling the symbols around to average out the very

1rmc1 burst errors over more code words.
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Block codes can be modified in six ways: The block length n can be
increased by attaching additional parity-check symbols (denoted as
extending) or by attaching additional message symbols (denoted as
lengthening). The block length n can be decreased by removing
parity-check symbols (denoted as puncturing) or by removing message
symbols '(denoted as shortening). The last two ways are when the
block length n does not change, but the number of code words is
increased (denoted as augmenting) or decreased (denoted as
expurgating). Modified codes are sometimes about the same level of

encoding and decoding complexity as the original, unmodified code.

There are many ways to perform these modifications. Some
modifications effect the error correction capability and some do
not. To understand more about how to specifically modify a

specific code, the reader should reference a more detailed text
than this tutorial.

Let a burst error length b be defined as the number of bits from
the first bit error in a bit stream to another bit error which is
within a particular portion of the bit stream such that there may
be some non-error bits in the burst error and such that there are
all non-error bits between consecutive burst errors. A RS code can
correct a maximum burst error length b of length b = (It-1)m+l
bits within an interleaved block system of I code words being the
block of Imn bits. If 1nter1eav1ng is not performed, then I=1. A
RS code can correct any combinations (or patterns) of t or fewer
errors within each code word. If interleaving is used, then a RS
code can correct most combinations (or patterns) of "It" or fewer
errors within the frame of I code words being the block of Imn

bits. RS codes are very powerful burst error correcting codes and

can also be made to be very powerful random error correcting codes.

Usually noise possesses both random characteristics and burst
characteristics. This results in random errors and burst errors

within the received (or play back) data. Since codes are better at
either burst errors or random errors, concatenation between
different codes are often performed. Usually concatenation is when
an excellent random error code is used as the inner code and an
excellent Dburst error code 1is used as the outer code.
Convolutional error correction codes are powerful random error
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correcting codes. When random errors within the channel become
more and more 1like burst errors, the convolutional decoder.
(Viterbi, sequential, or majority logic decoders) usually generate
burst decoding errors. These convolutional, burst decoding errors
could then be corrected by using a good burst error correcting
code, such as a RS code, as the outer code. The data sequence is
that data are ‘“p"t to the outer code encoder, then its output is
input to the inner code encoder, then its output is transmitted (or
recorded), corrupted by noise, and then input (or played back) to
the inner code decoder, then its output is input to the outer code
decoder, and then finally its output is either the decoded message
(or data) or the decoded message and corresponding parity-check.
Often this concatenation design results in superior performance
compared to a single code having some random error and some burst
error correcting capability. However, we pay for concatenatio
with a-decreased overall code rate.

o3

Cyclic block codes require synchronization words for the decoder.
With cyclic block codes we usually attach synchronization words
onto the beginning of the transmitted code words. Usually this is
done synchronously - and periodically by attaching one
synchronization word to every code word to be transmitted.

However, if the code words are interleaved, then we usually attach
one sync word to every I code words. Sync words typically do not
use error correction coding, but are typically designed to a
particular channel in an optimum manner. Cyclic block codes
usually are designed with sync words not only to sync to the
non-binary symbols (if the code is one with non- binary symbols),
but also to the first symbol of the code word (or first symbol of
the I code words). However, synchronization for cyclic codes can
be established and maintained without using any sync words. These
types of designs are more complicated, require additional
processing hardware, increase the propagation delay, and are less
efficient today than using sync words. 1In comparing a block code
and a tree code, tree codes such as convolutional codes often do
not require sync words to acquire synchronization. Convolutional
codes have an inherent coding sync capability; most convolutional
codes are self-synchronizing codes. This coding sync is not a code
word (or block) sync, a code symbol sync, an interleaved sync, a
frame sync, a packet sync, or a header sync; it is just a sync for
the code to hopefully be able to decode the received bit stream
containing errors back into the original message. So, cyclic block
codes regquire synchronization determined either by appending
synchronization words to cocde words or by a lot of additional
processing. Obtaining synchronization for cyclic codes by
additional processing and not using sync words does not allow a bit
stream to be random; cyclic codes are not self-synchronizing
because only certain types of data can be transmitted. Tree codes
require synchronization wusually determined from its self-
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synchronizing structure, but they usually need more redundancy for
the same amount of coding gain compared to efficient cyclic codes.

2.5 WHITE, BLACK, AND GRAY ZONES

A perfect code only has a single white decision zone for error
correction. If the received word of a perfect code is closest to
one particular code word than any other code word AND is within a
distance of t symbols away from+<it (i.e., T<t), then the received
word is in the white zone. Received words are decoded using MLD.
We should understand by now that MLD DOES NOT GUARANTEE TO ALWAYS
DECODE INTO THE ACTUAL MESSAGE THAT WAS TRANSMITTED. However, it
DOES GUARANTEE to always correctly decode the actual message that
was transmitted IF T<t actual errors were injected into the code
word. If T>t actual errors occurred in a perfect code, non-erasure
system, then the decoder would make an undetectable decoding error.
Actually, it is possible to add a little error detection capability
to a perfect code while retaining most or some the error correction
capability of the code. However, doing this transforms the perfect
code into a non-perfect code. This can be done by denoting some
code words as invalid, thus not using the full t error correction
capability; this would create a black zone.

A code which is not perfect has a white zone, has a black zone, and
might have a gray zone. Reed-Solomon codes are not perfect!!! RS
codes have white, black, and gray zones. If the received word is
Tst (T < t+t." for erasure systems) actual errors (the units are
code symbols or just symbols) or away from its nearest single code
word, then it is in the white 2zone; this received word is

guaranteed to be decoded correctly. If the received word is T>t

"
(T > t +t." for erasure systems) actual errors away from its nearest

single code word AND can be correctly decoded into this code word
(this is a function of the particular code itself), then it is in
the gray zone. However, even though it is possible to correctly
decode words within a gray zone, it is not usually realized into
systems. Gray zones are not usually used because received words
within this gray zone are usually difficult to find and decode.
Therefore, almost all of the time, candidate words for the gray
zone are treated as if they are in the black zone. The last zone
is the black zone. If the received word is not in either the white
zone or the gray zone, then it is in the black zone: this received
word is not able to be decoded. However, if the received word is
in the black zone, then the received word can be flagged as T>t
(T > t+t." for erasure systems) errors have definitely occurred
within it; non-perfect error correction codes have some degree of
error detection while retaining their full error correction
capability. The decoder can not correct any errcors in the black
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zone, but if desired, the noisy message can be extracted from a
systematic received word. This may or may not be good enough. If
passing either the received word or the noisy message from a
systematic code through the system is not desired, then it might be
desired for the system to ARQ and/or throw the received word in the
trash or to the bit bucket!

It should also be noted that a non-perfect code (with t error
symbol correction capability and some error detection capability)
can be designed into a code with less error correction, less
undetectable decoding errors, and more error detection. This is
done by shrinking the white zone and increasing the black zone.

When we decode only using the white and the black zones, we are
performing "bounded distance decoding." When we try to correctly
decode- by also using the entire gray zone, we are performing
"complete decoding." Symbol erasure is NOT complete decoding.

In general, this zone 'idea helps us to graphically visualize the
concept of error correction coding. The white zone is typically
known as the error correction domain, the gray zone as the error
correction domain beyond the distance of t symbols (or beyond the
distance of t.+t." symbols for an erasure system), and the black
zone as the error detection domain of an error correcting code.

2.6 SUMMARY

We got to see a super simple (3,1) block code example. It was
systematic in the sense that some portion of the code word always
contained the unaltered message, i.e., "ON" = "1" from the code
word "ON" = [010] and "OFF" = "0" from the code word "OFF" = [101)].
It is systematic, is not linear, and does not have a gray or blac}
zone, but it is a "perfect" code!

We also have been introduced to how block error correction
generally works. We have been introduced into decoding errors,
MLD, distance and weight, random and burst errors, concatenated
codes, synchronization, error correction and/or detection zones,
and the famous BCH codes which include the Reed-Solomon codes.
Some detailed definitions which have not yet been discussed
entirely will be discussed in the following chapters.

Now, enough introductory material. The remaining chapters work
some of the many RS coding algorithms for the case of our primitive
(15,9) RS code example.
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CHAPTER 3
REED-SOIL.OMON ENCODING

Let's get into RS coding! There are many error correction coding
algorithms around, but we mainly want to consider very efficient
(or powerful) random and burst error correcting codes - RS codes.
RS codes are BCH codes which are a subset of cyclic block codes.

Cyclic block codes are a subset of linear block codes which are a
subset of block codes which are ‘a subset of error correction codes
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in general. Therefore, RS codes are the great, great grandchildren
of block codes (see figure 2.3-1).

Within ‘this chapter we will start working our (15,9) RS code
example. We will be able to apply the material learned or reviewed
from chapters 1 and 2. A RS block diagram of the encoder is

presented along with the parameters and equations necessary to
construct our transmitted words. And now for the fun!

3.1 REED-SOLOMON ENCODER

Since we explained a general block coding system in chapter 2, let
us now talk about RS coding in particular. Assume the parity-check
information CK(X) is obtained from the message information M(X) by
the modulo-g(x) function.

CK(X) = X"*M(X) mod g(X)

-

or CK(X) could equivalently be found as:

X"kM (X)
= Q(X)g(X) + CK(X)
g(X) ]

where X"k is the displacement shift, M(X) is the message, Q(X) is
the quotient, g(X) is the generator, and CK(X) is the parity-check.

The code word C(X) that we will transmit is comprised of the
parity-check information CK(X) appended systematically onto the
message information, C(X) = X" M(X) + CK(X). The X"k purpose is to
shift the message M(X) to higher ground in order that the message
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M(X) does not overlap and add to the parity-check CK(X) within the
code word C(X) = X" M(X) + X"*M(X) mod g(X). This is done to
retain the systematic structure. Systematic structure is defined
as simply taking our message symbols and appending parity~check
symbols to it without changing our message symbols. This is part
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of the encoding process. The degree of g(X) is n-k and the degree
of X"*M(X) is either 0 [if M(X)=0] or from n-k to n-1 [if M(X)#0]..
Notice that the X" factor in the parity-check CK(X) = X" M(X) mod
g(X) forces the modulo function for all non-zero messages M(X),
e.g., even when M(X)=1, X" M(X) mod g(X) = X" mod (X"k+...) must
be calculated. The degree of CK(X) = X”kM(X) mod g(X) is from 0 to
n-k-1. Therefore, since n>k, the check information CK(X) never
overlaps the message information M(X). Thus, systematic structure
is retained. The message M(X) is in the k highest locations within
the code word C(X); the parity-check CK(X) is in the n-k lowest

locations.

If we desire to use a non-systematic code for some reason, then
often we use C(X)mn_wmmtic = g(X)M(X).

k k
M(X)—/—>| ———>| m /—>
1 u
1 1 > d n-k a
Xvk—/—1 t i / > a
v CK(X) is d
i the n
n-k+1 d remainder —>|—/—> C(X)
g(X)—/—>| e

REED-SOLOMON ENCODER

Figure 3.1-1. - Block diagram of a Reed-Solomon encoder.

Now, enough words. Let us finally see what a RS encoder looks
like. Figure 3.1-1 presents the block diagram for this RS encoder
and table 3.1-1 presents its associated polynomials.

TABLE 3.1-1. - POLYNOMIAL DEFINITIONS OF A RS ENCODER

message (or data or information) M(X) consisting of message symbols
Myt M(X) = M X*1 + M X2+ L0+ MX + M,

Uo]

n

0]

enerator (or code wor ) g(X) consisting of

ymbols g;: g(X x2t

o
+

Q

rat
2t~

or
t1 4

:X.

2t-1
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TABLE 3.1-1. - Continued

vh-kae 7 v _— s

X) = X""™M{X) mod g(X)

arity-check CK(X) consisting of parity-check symbols CK;:
(

-k-1 -k-2
CRup X770+ CK X708 4+ L+ CKX + CKg

e word C(X) consisting of code word symbols C;:
) = X™ kM{v\ 4+ CRIYY

= idy 4y v AN |y

Il

X kM(X) + X"KM(X) mod g(X) :

k n-k-1
M“X"1+...+2MX" + CK X + ... + CK,
= XU+ C X"+...+CX+C0 ‘

3.2 (n,k) RS CODES

Given a single value of the Galois field extension m, i.e., GF(PM),
a set of RS codes with varying error correction capabilities, block
lengths, and rates can be constructed. The P" unique code symbols
are constructed from the field generator polynomial F(X) and the
primitive element a(X). The parity-check information is obtained
using the generator polynomial g(X) with roots from GF(P"). A
(n,k) RS code is defined given values for m, n, and g(X). However,
when we get into the implementation we need to also know P (which
is almost always 2), F(X) [which is almost always a primitive
polynomial p(X)], a(X) [which is almost always X=a], and o [which
is any primitive element of GF(P") using F(X) and is almost always
set to a' in order to simplify the notation].

Table 3.2-1 1lists all the RS codes in GF(2") for m<4. The
bracketed (1,1) code shown in the table is presented to show that
any (k,k) code is not an error correction (and/or detection) code;
it is not adding redundancy. Notice the (3,1) RS code. I believe
this code is valid in that it can be encoded and decoded using the
standard procedures, yet it is edited from most (maybe all) coding
literature. I believe this is due to the fact that a (3,1) RS code
does not have a long enough block length to produce a substantial
decrease in error rate (or increase in SNR). A (3,1) RS code seems
to be the smallest RS code possible. It should lend itself to be
a good scholastic exercise. It can correct a maximum burst error
of one symbol within its block length of three symbols; it can

. ¢ e :
™ | 4+ £ 3 Lnl hdto £~ I
correct a maximum burst error of two Qig§itai ©ICS (Or J».J,Luuj..y

symbols) if the burst error occurred within a single symbol. It is
a single symbol correction code and can use the same field
generator as its code word generator polynomial.

From the table notice that a (n,k) RS code requires two
parity-checks per error; one is for the location within the code
word and the other is for the error value at that location. That
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is, n-k=2t.

From table 3.2-1 it should also be noted that as m increases the
number of possible RS codes increases in an exponential manner!
Thus, once the block length is determined from some fairly large m,
we can pick a code with a desirable pair of rate versus correction
capability. The rate (or code rate) r of a code is the ratio of
the number of message symbols k to the block length n; r = k/n.
Let the block correction BC of a code be the ratio of the number of
correctable symbols t to the block length n; BC = t/n. Let the
average message correction MC_, ng Of @ code be the ratio of the
average number of correctable message symbols t, = (k/n) (t) = rt to
the number of message symbols k; MC, . =t /k = BC. It is desirable,
but impossible, for the rate r to approach 100 percent while the
error correction capability t approaches n. Usually a rate
parameter and a coding gain parameter is of prime functional
importance.

TABLE 3.2-1. - RS CODES OVER GF(2") FOR m<4

m n k | t r

BC
(1] (1] [1] "[0] [100.0%] [00.0%])
2 3 1 1 33.3% 33.3%
3 7 5 1 71.4% 14.3%
3 7 3 2 42.9% 28.6%
3 7 1 3 14.3% 42.9%
4 15 13 1 86.7% 6.7%
4 i5 i1 2 73.3% 13.3%
4 060040 15 400040 O 40044000 3 24400004 60.0% 4404049 20.0%
4 15 7 4 46.7% 26.75%
4 15 5 5 33.3% 33.3%
4 - - 15 3 6 20.0% 40.0%
4 15 1 7 6.7% 46.7%

A prinitive RS code has the following parameters over GF(P"):

block length = n = P"™-1 (units are symbols)
pa ity-check length = n-k = 2t (units are symbols)
minimun distance = d = 2t+1 (units are symbols)
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All right, let us select a code from table 3.2-1. Let us use the
(15,9) RS code as our example that we are going to work throughout |
this tutorial. The (15,9) RS code is a classical choice for an
instructional example.

People usually compare codes in two viewpoints: The first is the
theoretically possible viewpoint and the second is the let us
implement it viewpoint. Coding engineers often compare codes by
trying to maximize channel capacity which automatically brings in
factors of high code rate, SNR, message throughput, and detectable
and undetectable decoding errors. Others are concerned with these
factors too, but still must hold a different viewpoint.
Implementation engineers often compare codes by a subjective
function of need, performance, risk, and the allocation of
resources.

Because this is a tutorial and is meant to help people understand,
the classic (15,9) RS ¢code is chosen to be demonstrated. Let us
construct our (15,9) RS coding example with the parameters as shown
in the following table.

TABLE 3.3-1. - THE PRIMITIVE (15,9) RS EXAMPLE PARAMETERS

block length ’ n = 15 symbols
message length k = 9 symbols
code rate r = k/n = 60%
parity-check symbol length n-k = 6 symbols
minimum code distance d., = n-k+l = 7 symbols
error correction capability t = (n-k)/2 = 3 symbols
block correction capability (n=-k)/2n = 20%
average message correction capability (n-k)/2n = 20%
Galois field order _ g = n+l = 16 symbols

This is a binary based system (i.e., P=2) becauss
P = g = 16 = (2)(2)(2)(2) = 2% for P being prime. This

détermines that P=2 states per 2-ary symbol (1l.e.,

2 states per binary symbol) and that the code symbol

length n is 4 binary symbols.
number of code words P™ = 2% > 10" words
number of received words pP™ = 290 > 10" ywords

- : . P = 236 0 ..
nunber of undetected decoding errors = 2°° > 10" words
& 0

number of error patterns P™ = 29 5 10" vords
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[ (X+a) (X+a?)] [ (X+03) (X+a*)][  (X+a®) (X+af)]

[X2+ (a+a?) X+a3] [ X2+ (aP+a’) X+al ) [X3+ (eP+ab) X+a'!)

[X2+aX+a> ] [X3+a'X+a ] X2+ X+a'?

[Xo4+ (T40%) X3+ (aT+a'2403) X2+ (a'%+a'0) X+a'0] [ X2+a X +a™)
(X4+a3x3+abx2+aX+a'?) (x3+aX+a'!) )

= X8+ (a%+a"?) X3+ (a''+aT+a’) X4+ (a¥+1+a°) X3+ (a?+a'2+a'%) X%+ (e +a’) X+ab
= %6 + a0% + a"%X* + o*X3 + of%? + X + ot

Q
>
|

oo

Therefore, the generator polynomial g(X) = Xo+a' 0%+ a x4+t X3+ atX2+a’X
+a®. Remember that we used a, a?, o®, ..., a®' as our roots of g(X).
These roots will be used in chapter 4.

If we had wanted to, we could have constructed our generator
polynomial g(X) as also being a self-reciprocating polynomial
£(X),., = X'£(X"). self-reciprocating polynomials have equivalent
jth and i-jth coefficients. The g(X) that we are‘going to use is
not a f(X), , because 1 # a®, o' # o’, and/or o' # «®. An example of
a self-reciprocal polynomial is f(X) ., = X84+ 9%5+a ¥ X ot X3 +a X%+
a'O%+1. Not all £(X),., are a valid g(X). However, one is
guaranteed to construct a self-reciprocating generator polynomial
g(X),., by choosing FCR = 2™l_t = (n+1)/2-t and a’=a(X)=a for (n, k)
primitive RS codes. The 2t roots are the following:

(m-1)_ (m-1) (m-1) (m-1), .
2 1'.“2 _.C!z- +1 2 +t-1

_,-o._,a .

In other words, the self-reciprocating generator polynomial g(X)...
is

(m-1)
{(m-3)

2 -t 2(!!“1-)_1 2"“‘1) zcm-1)§‘ ).i.--‘
g(X)g., = (X+a ) oo (X+a ) (X+a ) (X+a Y e oo (X+a© .
The greatest advantage of using a self-reciprocating generator
polynomial is that our RS encoder and syndrome decoder require less
hardware.

Primitive RS codes are non-binary BCH codes and use the g(X) forms
as previously shown. Other codes may use a different g(X). Make
sure you are using the correct g(X) for the correct code; RS codes

require g(X)R&F“k.

3.3.2 Code Word Polynomial C(X)

Now since we have determined our generator g(X), we can construct
___________________ €313 MY

the parity-check CK(X). Then we can append our message fieid M(X)
to it and thus construct our systematic code word C(X). Let us now
continue our (15,9) RS example with say

M(X) = 084 0X7+ 084+ 0X3+ 0X*+ 0X3+ 0X%+a''X+0 = a'X which represents the
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TABLE 3.3-1. - Continued
number of correctable error patterns (bounded distance decoding):l

5 (:)(P’“-l)i =3 (':)ni > ("ynt = (n!/(t!(n-t)!))nt > 10" words
i=0 . i t

From section 1.4.3:

field generator . F(X) = X*+X+1
the primitive element a(X) =X =«
From section 3.3.1:

code word generator g(X) = Xb+a'%%+a™xX4+a X3 +abX%+a’X+ab
the code word generator's primitive element a® =o' =«
the first consecutive root of the code word generator FCR = 1

3.3.1 Generator Polvnémial a(X)

To be able to decide what parity-check information CK(X) to append
onto our message M(X) we must first determine our generator g(X)
for a primitive RS code.

Where FCR is the power of the first consecutive root in g(X) and of
is any primitive element of F(X). It should be noted that any
primitive element al does not have to be the same primitive element
as the one used to generate the field; i.e., a® does not need to be
a(X)=X=a. For our primitive (15,9) RS example, a® can be any one
of the following primitive elements a, o?, o, @', a®, a'', o', and
a'. For our (15,9) RS example, we will select the code word
generator's roots to be consecutive powers of aS=a'=a. We will also
arbitrarily start at FCR=1. The first consecutive root in g(X) is
(«®)F®R = (a")! = o' = a which just so happens to be the same as our
primitive element a(X)=X=a. If we let a(X) = (af)f®®, then some of

the notation burden is simplified:

g (X) (X +a') = (X+ a)(X + ad)...(X + a%)

I
=

It
™
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message [0000000a''0] which is the binary symbol sequence "000000000
000000000000000000011100000."

C(X) = XVkM(X) + CK(X)

= X"kM(X)  + (X"KM(X)) mod g(X)
= (X% (a"'X) + (X%) (a''X) mod g(X)
= ("X’ ) + (@"X* ) mod g(X)
The calculation of allx? mod g (X) where
g(X) = X6+a'°X5+a"’X”+a"X3+a6X2+a9X+a is presented as follows:
a®X5+a"0%4 4 a3+ a'“X% 4+ a8 +a™?
al'X +ab + a(X)

X+ 9%+a "X+ af X3+ a8 XP+a X+ a8 | a''X7
a"'X7+ab%84a!%5+  X4+a? X3+05 X%+a?X
a®x%+a'%0+  X*+a® X4+a® X%+a’X
6X6+a X+a® X4a'%%3+a'2%%+ X+q'?
(@' %as (100" x4 (aBea O30 (@302 2P ixa’2 = o XP+a'0%4+at X3+a X2 +abX+a?

CK(X) = a''™X” mod g(X) = a®xP+a'0%+a*X3+a"xX2+a8X+a?
Just as it's difficult to place the division calculations in this
tutorial, it is sometimes difficult and nerve racking to write out
all this algebra using the standard notation. Therefore, I suggest
either writing a program to make calculations in a finite field or
using the following shorthand form as much as possible. So let us

just repeat what we have just done, but use this shorthand
notation.

The calculation of 11.7 mod g(X) where g(X) = 0.6,10.5,14.4,4.3,
6.2,9.1,6.0 is as follows:

851066314281120

,6.6,10.5, 0.4, 2.3, 5.2,2.1
6.6,10.5, 0.4, 2.3, 5.2,2.1 _
6.6, 1.5, 5.6,10.3,12.2,0.1,12.0
(10+1).5,(0+5).4,(2+10).3,(5+12).2,(2+0).1,12.0 = 8.5,10.4, &.3,14.2,8.1,12.0
Using either notation produces the same results;

CK(X) = 11.7 mod g(X) = 8.5,10.4,4.3,14.2,8.1,12.0.

Continuing with the (15,9) RS code example:

C(X) = a''x7 + CK(X)
= o™X + a'x’ mod g(X)
= a'X7 + o®P+a"% e X +a K2+ +a?
Therefore, the code word Cc(X) for M(X)=a'x is




c(x) = a"x” + a®xP+a'"% 4 X +a X2+ aBx+a?.

It is possible to demonstrate that the linearity principle holds

for any RS code word; RS codes are the descendants of linear block
codes. To show this, assume M,(X) = &°X* and M,(X) = «a''X.
Linearity is demonstrated if C,,(X) = C,(X) + C,(X). Solving for
C,(X) with M,(X) = &’X*: ~

C (X) = (X4 (%%) + (X°) (%) mod g(X)
a°X°® + a’X’ mod g(X)
= % +  aPx+a'?X4+ a3 +a X2+ a’X+al?

C,(X) is what we calculated earlier for M,(X) = M(X) = a''X:

C,(X) = a"X7 + a®X5+a'0%%+atX3+a X2+ a8X+a'?

Solving for C,,(X) with M,,(X) = M, (X)+M,(X) = o°X>+a''x:
Cpp(X) = (X8) (®XP+aVX) + (x8) (®X*+a''X) mod g (X)

= (@X+a''X’ ) + (®X"+a'"X’ ) mod g(X)

= oX%+a""'X’ T+ X+ X 4+t +a?X+X

Now to see if this linearity demonstration works, we need to check
that C,,,(X) = C,(X) + Cy(X).

Cy,p(X) 2=

o

(X) + Cy(X)

~
]

+ a®+a'x44+ a5 K3+a %%+ a?X+a'?)
+(a"X7 + xS+ a3+ a X2+ X +a'?)

?=? X’ + a''X7 + o3X5+ BX4+atX3+ a?x%+ X

=? oOX%+a''X’ + X+ X+alX3+a?X3+X

? C,(X) + C,(X) VYES!

SIS IS
I I

Therefore, since C,,(X) = C(X) + C,(X) = &®X*+a"'X" + *X’+a3x*+a®%3
+a?X%+X in this example, the linearity principal is demonstrated.

This is due to the fact that RS codes are cyclic linear block

codes. Cyclic block codes have the characteristic that each of the

code words are cyclic shifts of others, but not all others. Also,

the sum of any two code words is another code word. Since RS codes

are both linear and cyclic, it is useful to incorporate these facts
e

into the hardware design (see appendices A and B).

e S

3.4 SUMMARY

Well, we should now all be semi-experts on RS encoding! We know
macroscopically what systematic primitive RS error correction
coding is; take your message and append on some specific
parity-check to it and send it through the coding channel. Refer
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to appendix A to know how to construct the encoder using shift
registers.

And now on to Reed-Solomon decoding...




CHAPTER 4
REED-SOLOMON DECODING

Chapter 1 was about GF arithmetic, chapter 2 about block codes,
chapter 3 about RS encoding, and now we are going to decode what we
encoded in hhanfpr 3. The dphnd1nn process is to determine our

best estimate of the channel error from a. set of unique
characteristics which form an identifiable error pattern; these
characteristics are known as* the syndrome components S; or
collectively known as the syndrome s(X) (or as the syndrome matrix
s). After the estimated error E(X)' 1is subtracted from the
received word R(X), our estimate of the transmitted code word C(X)'
is determined. We call this estimate the nearest code word C(X)'.
Remember, if the error correction capability of the code is not
exceeded, the decoder always decodes to the original code
word C(X)!

Decoding processes are almost always more difficult to understand
and to implement into hardware than encoding processes. There are
several devices commercially available today which perform some of
the RS codes. However, the decoding process usually requires
efficient processing and thus usually requires shift register
circuits and/or computer-like circuits. Small, less powerful error
correcting codes are fairly easy to accommodate even at high data
rates. Larger, more powerful codes require more processing and are
a challenge to accommodate sustained high data rates. It is
sometimes tough when the decoding of high data rate data must be
performed in real time.

THE DECODING PROCESS IS A FIVE-STAGE PROCESS:

1MTadka ¢k

al e~ A~ emamAaTerad vraed
P Sy wadlwuldaLc o 11T L TLTALVEW WULW.

2. . Calculate the error-locator word from the syndrome

components.

e} Nalrmrlad+a +ha YA TAra+TAne Fyrm +ha Av_l Ar~ad s

- e wllldWwilldd U= il de de WA dAWiwldwldWViio de A \JAN il CLL\JL Wl W\ A
numbers which are from the error-locator word.

4. Calculate the error values from the syndrome components
and the error-locator numbers.

5. Calculate the decoded code word from the received word,

the error locations, and the error values.

The decoding process is a five-stage process. First calculate what
is called the syndrome s(X) or equivalently the 2t syndrome
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components S;. The syndrome can be determined in either of two
methods: S, = R(a') (= E(a )) or s(X) = R(X) mod g(X) =
REM [R(X)/g(X)] where S; = s(a') from I = Gi from g(x)mcmm within
section 3.3.1 (or dppenalx D). For our classic example of the
(15,9) RS code using a(X)=X, FCR=1, and a%=a', the 2t syndrome
components are simply S; = R(a') (=E(e¢')) = s(a') for i=1,2,...,T.
From all the S; calculate the error-locator polynomial o(X):; this
can be calculated in either of two methods: the linear recursion
method or the Berlekamp's (and Massey's) Method for error-locator
polynomial o (X). From the error-locator polynomial o(X), first
calculate the error-locator numbers z, for i=1,2,...,T and then

calculate the error locaticns x for i=1,2,...,T; this can be
calculated in either of two methods: the Chien Search Method or
the Explicit Method. From the error-locator numbers z; and the
syndrome components S;, calculate the error values y; for
i=1,2,7..,T; this can also be calculated in either of two methods:
the direct method or the error evaluating polynomial method. From
the error locations x; and the error values Y;,» the estimate of the
error E(X)' [or synonymously the decoded error pattern E(X)'] is
specified. Finally, the fifth stage is the determination of the

nearest code word C(X)' from R(X) and E(X)'.

Sometimes this five-stage process is thought of as three simple
steps: Step 1 is to calculate all of the syndrome components.
Step 2 is to determine the error-locator polynomial. Step 3 is to
determine the decoded error pattern from the error-locator and the
syndrome components and then proceed to correct the errors by
subtracting the decoded error pattern from the received word. 1If
one prefers to think of the decoding procedure as three steps, then
step 1 = stage 1, step 2 = stage 2, and step 3 = stages 3,4, and 5.
Step 2 is the most difficult.

It should be noted that sometimes designers like to design a sixth
stage (or a fourth step) into the decoding process. This optional
sixth stage is calculating the syndrome of the decoded code word
C(X)' to. ensure that S;=0 for all i:; this guarantees that the
decoder's output is indeed a code word. If the §5;#0 for all i,
then something malfunctioned; we shall not have malfunctlon=

4.1 REED-SOLOMON DECODER

At the receiver, if we wanted to, we can 1mmed1ately check for the
presence of errors by calculating the parity-check symbols from the
received message symbols and comparing this result with the
received parity-check symbols. If the two parity-check symbol
patterns match, then either there are zero errors in the received

word (which equates to the original code word being decoded) OR the
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error pattern was identical to a non-zero code word (which equates
to a decoded code word different than the original code word). If
P P P PO s A wa ot Tt A Frim AEF FI1mAIny A1 tthAara A
rLiIOLS vceLuLtreyu, we yecu LITLO Lile  1uUlil UL L Liialily Vu L willciL o Lile
errors took place and what the values of the errors are. The
errors can be injected in either the message part of the code word
X"¥M(X) and/or in the parity-check part of the code word CK(X)

where C(X) = X"*M(X) + CK(X). The symbol locations in the received
word R(X) where the errors took place are simply denoted as the
error locations x;. The error values at these symbol locations in
R(X) are denoted as the respective error values Y.

The block diagrams of a RS decoder and the coding channel are shown
in figure 4.1-1 and its polynomials' representations are given in
table 4.1-1. The block diagram seems simple enough, but how does
the decoder determine E(X)' given only R(X)? Well, the decoder
actually has to determine the error locations X;, the error values
Y;» and then E(X)' is specified! But then how are the x; and y;
determined? Well, we will get into that later within this chapter.

n
C(X)—/—> > n

n + >li—/—> R(X)
E(X)—/—> >

CODING CHANNEL
c(X)"' k

n D —>—/—> M(X)?

R(X)—/—> > E
L_ + > M n-k
>| calculate [—> U —>||—/—> CK(X)'
-E(X)' X (optional)
REED-SOLOMON DECODER

Figure 4.1-1. - Reed-Solomon decoder block diagram.
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TABLE 4.1-1. - POLYNOMIAL DEFINITIONS OF A RS DECODER

’ed word R(X) consisting of received symbols R;:

C(X) + E(X)

[(CpytE, ) X" + (C +E L)X™2 + ... + (C+E\)X + (Cy+E,)]
R, x"‘+R XV + ... + RX + Ry

18]
[
<

decode error pattern E(X)' consisting of error locatlons %X, and
error values y;:
E(X)' = y,x, + YoX, + oo + Y% ‘
decoded code word C(X)' consisting of code word symbols C;':
C(X)' = R(X) - E(X)' = R(X) + E(X)'
= X"KM(X) ' + CK(X)'
= x" M(X) ' + X"KM(X) ' mod g(X

NTT L

)
'
— n-1 n-2
= n- 'Xv +Cn- 'X +...+C1'X+C0'

decoded message (or data or information) M(X)' consisting of
message symbols M;':
M(X)' = Cc "% + cnz'x“'2 ool + Cg'X +C !

=Mk,'x‘<1 + MK LMY+ M

decoded parity-check CK(X)' con51st1nq of check symbols CK;':
CR(X)' = Cp (' X"¥ 1 4+ ¢ 0x"k2 4 | [ 4+ ¢ 'x + Gy’
= CK__,.q 'x“"<‘+c1<n 'x""2+...+cx,'x+c1<0'

To determine our best guess of what was transmitted, E(X)' is added
[equivalent to GF(2) or GF(zm) subtractlon] to R(X) to correct R(X)
into C(X)'. Hopefully C(X)' is C(X); in fact C(X)' is EXACTLY C(X)
if the error correction capability is not exceeded!

4.2 SYNDROMES -

With M(X) = a''X and c(X) = a"'X7 + o®xX5+a' %X +a*X3+a*X2+a8%+a'® from
section 3.3.2, let us complete the first stage of the (15,9) RS

decoding.

Assume some noise was injected into the coding (or communlcatlons)

channel and as a result some of the binary oymbols (or bits) w. thln

ﬂﬂﬂﬂﬂﬂﬂﬂ B = = 1 -r-
two code symbols were altered; errors occurred in the X% and the X

locations.
Suppose R(X) = X%+a''™X7 + o®X5+a'9%+a'X3+a3xX%+alX+a'2.

Notice that the coefficients of X3, part of the RS data source
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field [X"*M(X)], and X?, part of the RS check symbol field
[X"*M(x) mod g(X)], has changed from 0 and o' to 1 and o’ .
respectfully. This example just so happens to show the right most

binary c"}'{‘bC’ tr1+-‘h1n both of the error cymbols ac belng f1 1ppaﬂ.

vectors (0000) and (1001) to vectors (0001) and (1000)
respectfully. REED-SOLOMON CODES NOT ONLY CORRECT SINGLE BIT
ERRORS (i.e., binary error symbols) WITHIN A CODE SYMBOL, BUT ALSO
ANY NUMBER OF BIT ERRORS WITHIN A SYMBOL! This is why we generally
speak of RS codes correcting symbols and not bits; RS codes are
burst error correcting codes including some degree of random error
correction capability. The output of the RS decoder should strip
off these errors from R(X) and result in C(X)'.

The word "syndrome" is defined in a dictionary as a group of signs
and symptoms that occur together and characterize a particular
abnormality. It is also defined as a set of concurrent things that
usually form an identifiable pattern. 1In the coding application
syndrome components S,.are these individual characteristics that
characterize a partlcular error pattern (abnormality). The
syndrome s(X) is simply the accumulation of these characteristics

where S;=s(a').

The syndrome components S; can be determined in either of two
methods as presented in sections 4.2.1 and 4.2.2.

4.2.1 Method 1: Syndrome Components S;

= R(a') = R((af)’) for i = FCR, FCR+1,.. ., 2t+FCR-1 and for the code
word generator primitive element @®. For our RS example, Si=R(aW
for i=1,2,...,2t.

R(X) = X3+a"X" + o®x5+a"%%+a*X3+a3X2+a8X+a'?

S, = R(a) - B
= (N8 AV Tan8ratSant0ramibantrat3endrwien8ratant?
\\ﬁ-’ LI = \u’ LAY \“l LR 9 ‘\.Al ' A \\Ll A \“l v N \u’ LR
= a® +a'fa’ +afe® +2'%* +afa® +2%e® +afa  +a'?
= af +a'8 +a o +a’ +a’ +a® +a'?
= (a® +a®  )+(a@B® +a™  )+(2” 45 )+ (0¥ +a'?)
= (o Y+ (a? Y+ (o Y+ (o )

L ad 7 \ 7 \ 7
= (a+a’®)+ (a’+a’)
= (0 )+ (1 )
= 1
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S, = R(a?) =1

S; = R(a?) = o’

S, = R(a’) =1

Ss = R(a’) = 0

S, = R(a®) = a'

Therefore, the syndrome components are S 1=5,=5,=1, S3—a + S¢=0, and
s,=a'’, Notice that in this example, i.e., 5, = (s, ) = 1,
Sa = (5% =1, 5, = (8;)? = a', and s, = 0. S,; = (S,)? for RS codes
is not the general case; S,y = (S)2 occurred because we had a
special type of an error pattern. T* should also be noted that the

syndrome components are not the coefficients of the syndrome
polynomial s(X). The syndrome components are of the form Si~s(a)
for af=a'.

4.2.2 Method 2: Syndrome Polvnomial s(X)

The syndrome components S; can also be found by first determining
the syndrome s(X) = REM [R(X)/g(X)] R(X) mod g(X). This method

works for both systematic and non-systematic codes. Then the
syndrome components S; can be found by S, = s(a') for
i = FCR, FCR+1,...,FCR+2t 1. For our (15,9) RS example, S; = s (a')
for i = 1,2,...,2t. These calculations are left as an exercise!

The results of this exercise are the same as the results found in
section 4.2.1 and appendix C: §,=5,=5,=1, §,=0®, S,=0, and Sg=a'’.

The S; and the s(X) can also be calculated u51ng matrices as later
presented in appendix C. Remember that in order to ease the hand
calculation burden, we can use either the shorthand method of
aixi=ji. j or write a program to perform the calculations.

4.3 ERROR-LOCATOR POLYNOMIAL o (X)

o0.(X) is known as the reciprocal of the error-locator polynomial
g(X) where the roots of o0.(X) yield the error-locator (or
error-location) numbers z;. 0(X) 1is known as the error-locator
polynomial where the inverse of its roots yield the error-locator
nunbers z;. The degree of either 0.(X) or o(X) determines the total
number of error symbols T which for non-erasure systems is less

than or equal to the error correction capablllty In RS cecding,
understanding is often easier using o +(X) to find the z; rather than
o(X).

The syndrome components S; are known; the error locations x,and the
error values y; are not knnwn The c are related to the z, (i.e.,

also the x;) and the y; by the follow1ng set of independent
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NON-LINEAR simultaneous equations (equation 4.3-1) called the
weighted power-sum symmetric functions.

N TV ATY TVAAT A AL T A
wilere 1=rC K, riegK+l, ... ,£LLtTruiKwiL,

1

5, = X yjzf and where T for non-erasure example (equation 4.3-1)
i= is the number of errors t.st.

In our example, i=1,2,...,T, because FCR=1 is the power of the

first consecutive generator root.

Usually there are many solutions’'to this previous set of NON-LINEAR

' . . . .
~ +h s ETTS 3 41 A 4 £ 4+ -
e&aatlcns; €58 8S0.iUuTiOhis are widnin 4a Gistance o T &rrors.

However, there 1is always only one correct solution within a
distance of t symbols; the correct solution is simply the o_(X)
polynomial representing the fewest errors (i.e., the 1lowest
possible value of T) occurring which satisfies equation 4.3-1.

Once 0 (X) is known, the error locations x; can be determined and
then equation 4.3-1 simplifies into a standard set of independent
LINEAR simultaneous equations. We all can then solve these LINEAR
equations for the y.!

Berlekamp came up with an efficient iterative algorithm denoted
appropriately enough, Berlekamp's iterative algorithm for finding
the error-locator polynomial o(X). If you can come up with a
better algorithm than Berlekamp's iterative algorithm to find the
solution with the fewest terms (or errors) out of a set of many
solutions growing exponentially as code length increases, you might
become a millionaire!!!

Appendix D presents more details of the 1link between the
error-locator polynomial and the weighted power-sum symmetric
functions.

There are two methods we can implement to solve for o(X):
Berlekamp's algorithm for o(X) presented in sections 4.3.1.1 and
4.3.1.2 and the 1linear recursion method for o(X) presented in
section 4.3.2.

4.3.1 Method 1: Iterative Algorithm for o(X)

There are two equivalent presentations of Berlekamp's algorithm:
Berlekamp's algorithm presentation for finding o(X) and the
Euclidean division algorithm presentation for finding o(X). One of
the most common ways to present Berlekamp's algorithm is in a table
format and will be denoted as Berlekamp's algorithm presentation.
Berlekamp's algorithm presentation is a little simpler to follow;
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the Euclidean or greatest common division (GCD) presentation is a
little easier to intuitively understand. Regardless of the
with the least number of terms which is the single solution linked
to a set of simultaneous NON-LINEAR equations. Since there is more
than one possible solution to equation 4.3-1, we use MLD and pick
the 1link o (X) with the lowest degree. o (X) transforms
equation 4.3-1 into a set of solvable LINEAR equations always
possessing a single solution. This single solution is simply the

decoded error pattern E(X)'.

4.3.1.1 Berlekamp's Algorithm Presentation
Table 4.3.1-1 presents the most common presentation in describing
the Berlekamp's iterative algorithm. Following this,

table 4.3.1.1-2 is then developed for our primitive (15,9) RS
example.

TABLE 4.3.1.1-1. - BERLEKAMP'S ITERATIVE RS ALGORITHM FOR FCR=1l

- (X)) 4, _h,_ _u=h,_
-1 1 1 0 -1

0 1 S¢ex=S, 0 0

1 eee e ces coe
2t o (X) —— — -

PROCEDURE TO FILL IN TABLE 4.3.1.1-1:

h .

1. If d“ - 0' then o(“‘1)(x) = o(“)(x) and h#*1= M

2. If d“ # 0, then find a row before the pth row, call
it the Pt row, such that D-q)has the largest value
in its column before the pth row (f may be one of
several values) and 4, # 0 and then:

p
o(ﬂ”)(x) = O'(“)(X) + d#dp-‘lx(ﬂ-'ﬂ)o-(p)(x)
hﬂ*‘ = MAX [h#r hpﬂi“p]
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3. In either case:

d,, =S, +0,®s + ... +0 s .
n+ us2 1 u+l (u+1) us2 h(u+1)

where o,V are the coefficients of o™V (x) = 1 +

(u+1) (u+1)y2 e+ 1)yrhep+1)
g, X + o, X0t oot Opongy X

The following are a few choice calculations used in developing

table 4.3.1.1-2 for our primitive (15,9) RS example.

At row p=1, the value u=0:

oM (x) = oM (x) + Ay (d ) IXOEMGED (%) = 1 + (1) (1) (xYH (1) =1+ X

Continuing at row p=1 with the value u=0:

h, = MAX [hy, h, + 0 - (-1)] = MAX [0, O + 0 + 1] = MAX [O,

d =8,+0Ms, =1+ (1)(1) =1+1=0
At row p=2, the value pu=1:

d =0

o(X) o'(X) =1 + X

h,=h, =1

d = S5+ 0, = & + (1)(1) = a® + 1 = "

And so on, and so on, and so on, until o(X) is obtained:

0x2, %41

R

0(X) = 0®(X) = 0%(X) = 1 + X + a''%2 =

1

[ —)
i
[

Note that the calculations for ¢’ (X) and d, use finite field math

and the calculations for h“ and p- h“ use infinite field math The
results are presented in table 4.3.1.1-2.
60— NSC-21834




TABLE 4.3.1.1-2. - EXAMPLE OF THE BERLEKAMP'S ITERATIVE ALGORITHM

- aMxy 4, b _u=h,_

-1 1 1 0 -1

0 1 Srer=S,=1 0 0

1 1+X 0 i 0 (pick p = -1)
2 1+X a0 1 1

3 1+X+a'0%2? 0 2 1 (pick p = 0)
4 1+X+at0x? 0 ’ 2 2

5 1+X+a'0%2 0 2 3

2t=6 1+X+a10%? - -— ——

Therefore, the error-locator polynomial o(X) = &'%%?+X+1. Then, o,=1
and o,=a'’ are from o(X) = a'%X%+X+1 = ¢ ,X?+0,X+0,. These o, are the
coefficients to the " error-locator polynomlal o (X) and its
reciprocal ¢ (X). o(X) and ¢ (X) are related by the following:

Kaaka P\ KRaw 4T

0.(X) = X'o(X") = xX3(14+X +a"%?) = X2 + X +

Therefore, the error-locator polynomial reciprocal o.(X) = X2+ X+010
and the error-locator polynomial o(X) = a'®X%+X+1.

We have completed Berlekamp's algorithm. In the next section this
same iterative algorithm is presented in a different way; I believe
them to be the same algorithm.

4.3.1.2 Euclidean Division Algorithm Presentation
2t .

Let S(X) =X SX'1 =8, + S;X + ... + 5X* + 5% = "% +X3+ax%+x+1
i=1

Divide x2t by S(X) » then S(X) by r,, r, by r,, r, by ry,..., until the
degree of r; < t:

Divide X® by S(X):

X +a'9%3+ a5 X%+ a5X

5 oIy
X +¢C + S{X)

a0+ x3+atxP4x+1 | %8
X0+’ X+ '3+ % X% +a5X
X4 O+’ X2+ a’X
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x6 X 4+a1%%3+ X2+ %%
= a’X +

1\ [alVA AN
S{X) 2 4a)

(e°X)S(X) + (*X*+a'%3+a’%x%+a’X)
(4 )S(X) + ( r, )

>
o
It

I

KEEP GOING!!! The degree of r,=4 > t=3.
Divide S(X) by r:
S (X) 1

= a’X + a'% +
r, r,

S(X) =-(a’X + "), + 1
= ( d, )r1 + r,

STOP!!! The degree of'ié=0 < t=3.

Put the previous results into the following form:
S(X)o(X) = A(X) + X?'B(X)

A summary of the previous results is:

r, = x* + q,5(X)
x, S(X) + q,r,

Combining to form one equation:

r; = 5{X) + qX* + gS(X)]
X*[@,] + S(X)[1 + q,q,]

Substituting values:

1

X6[SX + @] + S(X)[1 + (a°X) (X + a'%)]
= X[’ + ') + S(X)[a"%® + X + 1)

3 +m — AIvY 1 vitmrun
but in p er fo cf s{X)o(X) = A{X) + X'B{X).

I

1 + X[e’X + a'%)

S(X)[a"% + X + 1)
1+ X[a’X + ')

S(X) ([ o (X) ]

I

Therefore, the error-locator o(X) = a'%%%+X+1 = 0,X%*+0,X+1.
Therefore, o,=1 and o,=a'’.

o (X) = X'o(X") = X2 (1+X 4a'%%?) = X2 + X + a'°
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Therefore, the error-locator polynomial reciprocal o (X) = X%+X+a'°
using the Euclidean greatest common divisor algorithm. Notice that
the same ¢ (X) was correctly obtained as in section 4.3.1.1. Maybe

it is really yua:u.u.u—: to solve a set of NON-LINEAR eq‘aatia 1S for
the '"correct" single solution!

4,3.2 Method 2: Linear Recursion Method for o(X)

The following is how we use the‘linear recursion method to solve a
set of <1mglta"eeL= linear equations for o (X). The following
equation is derived in appendix D.

. -
5; = £ - S,;.101. for i = T+FCR,T+FCR+1,...,2t+FCR~-1

j=0 J j
This is simply S, = Si{40; *+ Si.q40pq + ... + §;,0, for i=T+FCR,

T+FCR+1,...,2t+FCR-1.

Our non-erasure example has T = t; £ t unknown error symbols to
solve for and FCR=1l. 1In this example, t=3 error symbols so T<3
error symbols.

)

*irst, we assume that T=0 errors have occurred. For our example,
T>0 errors because at least one S; was nonzero.

Next, we assume that T=1 errors have occurred. We then obtain the
‘Fn'l'lnw‘lna set of ecmiations from the nrevinue a

~F AW 22 PO T atTais ca il waT ATV awke weal

S; = %0 814j-191-j = 54404 for i = T+1,T+2,...,2t

When these equations are completely written out they look 1like

this: s, = S,0,, S; = 5,04, 5, = 8301, Ss = S,0,, and S, = S.0,. We
notice that these equations are insoluble and therefore T>1. For
example, if S, = 6 oy = a0, = o then o, = % but this cannot be
since §; = a2u1 = g%’ = o # .

Since T=0 and then T=1 did not solve the equations, then try T=2.
This results in trying to solve the following set of equations:

Sy = T, 84207, for i = 3,4,5,6

oo YiSC-21834



These set of equations result when T=2.

5102 + 8201 = Sy
o A - o
DZUZ s DSU Dl.
830, + 5,0, = S¢
5402 + Sg04 = S6
It turns out that it is possible to pick any T=2 equations to solve
for the T=2 unknown o; values. Let us just pick the first two

equations from the preceding set of equations.

S.0, + S0, = S
[ 4 e 1
Sza2 + 5301 =8

(*1]

~

To determine whether T=2 errors have occurred, we can at this point
simply Ttalculate the determinant of these T=2 equations. If the
determinant is non-zero, then T=2 errors have occurred. Otherwise,
we should continue this process for increasing T until T<t.

2

S
S, 55

2

S
Let ISUIZ = | S
Check for a non-zero determlnant of |so|,; DET |So|, is a scalar
magnitude called the determinant.

Next, we substitute the syndrome components S; values from
section 4.2.1 to obtain the following results.

=

= 1

NQ
+ +
R
im_?
|1

n 0
wWn

Q | 4 1
DET |so|, = DET | S, = DET | 1 o | =a’ + 1 = af

The determinant is not equal to zero so therefore T=2 error
symbols. Remember that in a non-erasure example T<t. Now solve

for the values of o, for i =1,2,...,T =1,2.
1 a°
DET | 1 1 1+ o a'?
0'1:: = = = 1
DET |sol, a'® o'l
a® 1
DET | 1 @’ a® + 1 a’
0’2= = = = q° = 'Y
DET |so], a'® al?
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We can construct the error-locator or its reciprocal at this point.
The reciprocal of o(X) 1s shown below.

- 37 T-§ : =
o.(X) = Eo 0;X with o, = 1

2 = w2 10
o.(X) X*+o0X+ 0, =X +X+ «a
Therefore, the error-locator polynomial reciprocal o (X) = X’+X+a'°
and T=2 errors have occurred. Again we receive the same results as
in sections 4.3.1.1 and 4.3.1.2. See appendix B for a hardware
design using S; to determine o

J

We find the error locations x; by first finding the error-locator
numbers z;. The z; are the roots of o.(X) or are the inverse of the
roots of o(X). 0o(X) is as easy to determine as ¢ (X); once one is
determined, the other is also determined. I prefer to use o_(X)
instead of o(X) for two reasons: The first is to demonstrate that
there 1is usually more than one way to solve a problem; some
sclutions are more easily applied and/or implemented and/or
calculated than others. We must always be on the alert for better
ways to do the same thing. The second is that o, (X) is more

clearly defined from the error locations (see appendix D).

ind the error locations ¥x..

There are two egquivalent algorithms to

1lel e aiel a1y pRLLL~

f

f ;e
They are the Chien search and explicit factorization. They both
find the roots in the error-locator.

4.4.1 Method 1: Chien Search

The following is how we perform what is commonly called the Chien

search. The Chien search calculates the outputs for all the
possible inputs; it is a very simple, brute force, search
algorithm. The Chien search determines the roots of either the

error-locator polynomial or of its reciprocal. The roots of the
reciprocal of the error-locator polynomial o (X) are the
error-locator numbers z;.

T

::t

~ LT — VvV .~ \ Cmve T A EAavm AF A~
Ur\Al b )il:1 ‘A o Qil PPN 6{ Ll il 4LVLIN VL (%9
Find the roots of o.(X), i.e., determine o0.(X)=0 for
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X =1,a,a%,...,a"".

o (X) = X+X+a'®

o(1) = (12 + (1) +aP=1 +0a =«
o(a) = (a)? + (a) +a@ =a®+ =1
o (az) = (a®)? + (a?) F a'® = a* + a* =0
rr { 3\ = of + a2 = %
ar( ) = aw + a° = :L5
o (a ) =g +1 =a
r 12 7 2 .
o.(a ) =+ a =a
a(a) = q'% + o® = of
(a) =a +a =20
The two error-locator (or error-location) numbers are z1=oz2 and
z,=a®. ~It does not matter how the z, for i = 1,2,...,2t are
assigned to the roots of o.(X). I prefer 1lower indices to

correspond to the lower locations in consecutive order and higher
indices to higher locations, e.g., I prefer z,=¢* and z,=a® over

z,=a® and z,=a®.

The error locations X; are defined from the error-locator numbers
z; as Xx; = X~((log,z;)/G). Since in our example a%=a', then
X, = X~((log,z,)/G) = X’\((loga)/l) = X~(2/1) = X~(2) = X? and
X, = X*((log,2,)/G) = x8.

Since o - (X) in this example is a polynom1a1 of degree two, it has
two and only two unique roots [e.g., X+X+a'! = (X+a?) (X+a®) because
or(az)-or(a) =0]. Therefore, there is no need to solve for the
remaining roots; all roots have been found at this point. However,
for the sake of completing the Chien search, the calculations for
the remaining roots are computed.

R R
vt o

—.
- O\_r
Nr”
Il

Q. QaaaQaq
ars"
e S S
oo

R R R R

I

Notice that or(0)=ar(a'°) is never calculated because there are only

n = 2™1 locations in a primitive code. The locations are denoted

0_ 1 2 3 n1 2 3 n-1
X'=1, X=X, X, X’,...,X =1, X, X, X,...,X""; in this example,

there is no X™°=0=null position.

From section 4.2 the received word is repeated with the error
locations underlined from how we designed our example. These same

locations were also able to be determined by the Chien search.
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R(X) = x%+a"X” + o®+a'"0% 4+ Cra?x2+alX+a™

Error location Error location determined

determined by the by the Chien search
Chien search

This section's Chien search results of x,=X? and x,=X® checks with
the code word and the received word from section 4.2.

)
4.4.2 Method 2: Explicit Factorization

The basic idea here is to change variables in o(X) or o (X) so as
to change o(X) or o _(X) into a "standard" form whose factorization

is stored in a TQQk up table. These techniques work well for low
values of t. In fact, this may even be faster than the Chien
search for low values of t. More information that discusses

techniques of variable substitut
found in coding and mathemati

4.5 ERROR VALUES Yy,

There are two methods that I will present here: the direct
solution and the error evaluator polynomial method.

4.5.1 Method 1: Direct Solution

Since T, x;, and S; are known, we can solve the set of simultaneous
linear equations for y,. The following equation i1s repeated from
Section 4.3. Reducing the following set of simultaneous NON-LINEAR
equations into a LINEAR set, the error values y; can then be
determined.

where i = FCR,FCR+1, ...,2t+FCR-1 and
2 where T for a non-erasure example is (equation 4.3-1)
j=1 the number of errors t, < t.

For our (15,9) RS code example, these weighted power-sum symmetric
functions reduce to:

trhara 1==1 2 £ arnAd whara
2 wWiitcli<e &L dyglgeece U Qild WilTLT
S, = % yjzf T=t,=2 < t=3 as determined
j=1 in Section 4.3.
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Use equation 4.3-1 to construct the following set of 2t non-linear
equations:

yy(2y) + y,(2;) S,
Y1(z1)2 + y2(zz)2 =S,
Y1(z'1):'s + yZ(zg)? = 55
y1(z1)" + Yz(zz)“ = 5,
Y1(z1)5 + YZ(zz)s = Sg
¥Y1(2)¢ + ¥,(2,)¢ = ¢

¥

We only need T=2 of these equations since we have T=2 unknowns
(i.e., y, and y,). Pick two equations; I will pick the first two
since they look the easiest:

}’1(21) 'tyz(zz) = S1
Y1(2)2 + y,(2,)% = 8,

2 8

Substitute z,=a° and z,=a” to transform the preceding set into the

following linear set.
yy(@®) + y,(a®) =1
v1(a®)? + y,(e®)2 = 1
This simplifies to:
yo? + y,a® =1
yia + y,a =1

Now use the standard Cramer's rule to solve for the coefficients.

{ &2 (‘1‘8 !
DET |Y|=DETla‘a |=a3+a’2=a‘°
| a® 1
DET | o 1 | a® + a o'
Y, = : = = =a =1 -
DET |Y| a0 al?
| a2 1 |
DET | a* 1 | a? + ot a'?
Y, = = = =a =1
DET |Y]| a'® a'?

Therefore, y,=1 and y,=1. The first and second error values Yy, and
Y, just so happen to be the same; §q=yfqﬂ=1. It should also be
noted that y, = 1,a,d% ...,e"" are all valid error values y,.
Notice that these error values check with the discussion of the
symbols in error within section 4.2. We got the correct decoding
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4.5.2.2 Hardware Error Evaluator Polynomial
This section describes an algorithm which is sometimes used in

implementations.

Yy = for i =1,2,...,T and ,
for i#j in the denominator

zZ; i:]=1 (z; + zj) .

3 L3 -1 L3 [
Where o, ; 1s defined by: rlo (X + zj) for 1i#j
L3 J:
- khkhkkkkkkhkhkkkkkk OR kkkkkkkkkhkkkkkkk
1-1 v_a_!? _ . .
T o XM for 1 can= j
j=0 ir]

Solving for y,:

(g - 1 (o) —
22Y1,0 T PV

Y. =

z,(2y + 2,)
I PR ¥ 4+ 2. = 1¥X 4+ 2. = 0. X 4+ o,
1.] “* =2 == =2 ~1,0°° 1,1

Therefore, 0, =1 and o, ;=2,= =a®. Now substitute 0y,0=5,=5,=1 and c’1,1=":‘8

into the precedlng Y4 equatlon.

(1) (1) + (1) (a®) 1+ ab a?
y1 = = = = =1
a?(a? + ab) a* + a'f a?

Solving for y,:

5,8, 5 * 54034 -

Y, =
zz(zz + 2z,)

0yt X+ 2y =0,X + 0y,
Therefore, 0,,=1 and o0, =z,=a’.
(1) (1) + (1) (a?) 1+ a o

YZ= = = = q = 1
ad(al® + a?) a + o' 8

Therefore, y,=1 and y,=1.

76— A
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Notice that we obtained the same error values y, as in the first
description of the direct method (sections 4.5.1 and 4.2).

lhm ey A A oAnlera A ar armAA e
wiice X{ LD cC oDvUALVC wili= Y 114

(¥
equ ations for T=3 and then let zy—o to receive the case of T
Doi

[ » Q 4-.,5 2 A8y 7 ns £ n8 nl'
\-’3 T bzl)z L ¥ \u ' ‘.L’ 153 1 “ A 0
y1 = = = = = q' = 1
z,2(z, + 2z,) a®(a? + af) a* o
S. + 2.8 as + {az\ (1) o’ + gz o
~3 bl v } \ I \N=7 =
yz = == = = = au = 1
z,%(z, + 2,) a(a® + ab) e @
Therefore,; y,=1 and y,=1.

Still we obtain the same error values y; (see sections 4.2, 4.5.1,
4.5.2.1, and the first part of this section).

4.6 DECODED CODE WORD C(X)'

Now since we have already calculated all our error locations x; and
error values y,;, we have just finished constructing our estimate of
the error E(X)' which is simply the estimate of the noise.

T
E(X)' =2y = ¥iXy + V%, = (1) (X3) + (1) (x®) = x2 + x® = x® + x?

Notice that since y,=y,=...=y,=1 within the main (15,9) RS example
for our particular R(X), E(X)' just so happened to be a binary
polynomial. Y, = 1,a,0%, ..., and thus E(X)' is always a
polynomial with code symbol coefficients. .
The received vector 1is a function of C(X) and E(X):
R(X) = C(X) + E(X). Since the decoder only has the received vector
R(X) and since it can calculate our estimate of the error E(X)'

o ’nl"v 1 JUR R S, —— £ v-\lr

\.ls

tne C.LOSESC coae wor (1 ()\) can pe UBLEIIH_LHBLI as a LUIILLLUII OL K{A
and E(X)'.
C(X)' = R(X) - E(X)' = R(X) + E(X)"

Therefore, we find our closest code word by adding (equivalent to
mod-2 subtracting) our estimate of the noise to the received block
of data.
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C(X)' R(X) + E(X)'

[X8+a"X7 + o®X0+a'X*+at X3+ %% +alX+a’?] + [XB + X%
A+ X84+a"X7 + oBXP+a' X4+ at X3+ (a3+1) XP+alx+a’?
X7 + aBXo+a 0%+ at X3+ a X+ ol X+l

C(X)' is indeed the same as C(X) in this example!!!

From Section 4.2 the following code word was transmitted.

+a X'+a'X+a 'X+a"X+a'*. Therefo

re, C(Xj*

(' )
>
<
o)}
0

Now str_fp the message field from the corrected data.

I

M(X)' = C,,'x" + ¢ xk2 4 Ll 4 'X + C,.

allx

n k+1

The message M(X) transmitted systematically within the code word
C(X) is M(X) = a''X. Therefore, M(X) '=M(X) as expected.

Now strip the check field from the corrected data.

CK(X) "

' yn-k-1 n-k-2
Cpopey ' X + C 0’ X + ...+ C'X +
a®X5+a'0% %+ at X3+ a4 X2+ alX+a 12

The check CK(X) transmitted systematically within the code word
C(X) is CK(X) = abxX*+a'%%*+a*X3+a'*x%+a®X+a'?. Therefore, CK(X) '=CK(X)
as expected.

WAtk ira +hadb atnman +hava vram .-’-34—-24- Te Lde A mderea ~ e

RNV LALLT Liia e DLl LUTLE wad uTlidillliuve .LX .I.‘l_ daCtulad EerrorT bylluJU.Lb,

our decoding process actually pic k d the same code word that was
is

transmitted. The message M(X)' then systematically extracted
from the decoded code word C(X)'. The parity-check CK(X)' can also

hn c1rc§-am=4-1rv='l1\r ov#r:ni—nr‘ 3F rnandAnA Trn many annlicrabrinane +ha
SySieTiiavatlaaay XILracted 1i neeged. 41l awdlly appaatlaciUiis uile

decoded parity-check CK(X)' is usually thrown away or is not even
determined! Who needs it? Maybe someone might need the received
(or played back) word R(X), but who needs CK(X)'? The C(X)*!

results demonstrate the correct decoding of a Reed-Solomon code

Mo snvaas wae. QT AT VL ATwE Mo wvnmaary AVC TR W A WLVl T

It works! It really works!

4.7 SUMMARY

In chapter 4 our RS code is demonstrated to be able to be decoded.
This 1is because we are able to take our original message
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symbols M(X), append parity-check symbols CK(X) to it, send it,
corrupt it with errors E(X), receive it as R(X), and then decode
R(X) back into our original M(X) if T<t. We were able to
demonstrate a simple example of a mk = 36 bit message (i.e., the
binary sequence "000000000000000000000000000011100000"), encode the
message by systematically adding redundancy to develop a mn = 60
bit code word (i.e., the binary sequence "0000000000000000000000000
00011100000010101110011100101011111"), transmit (or record) it,
allow errors to corrupt it, receive (or play back) it as a mn = 60
bit received word (i.e., the binary sequence "000000000000000000000
OOOO00111100000010101110011100601011111"); and finally to decode
the received word back to the exact original 36 bit message. This
(15,9) RS example could correct a maximum of 3 code symbols out of
15 code symbols; this code can withstand a maximum symbol error
rate SERma (or simply block correction BC=t/n) of t/n = 20%. It is
equivalent (but awkward) to indicate that this (15,9) RS example
could correct up to a maximum of any where between 3 and 12 bits
out of 60 bits dependlng where the bit errors occur. Usually this
code is said to be able to withstand a SER = 20%

If we feel good about the RS coding operations so far, then let us
move onto chapter 5. Otherwise, we should reread the previous
chapters. This coding stuff is fun!
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CHAPTER 5
SYMBOL ERASING AND REED-SOLOMON CODING

We should now know the Reed-Solomon encoding and decoding

operations which were procan*h:ﬁ in the prnv1 ous chapters. Knowing

operations
this, let us continue and instead of assuming hard dec151on at the
decoder, let us assume soft decision. If we have the soft decision
capability, we can come up with an algorithm to pick a few of the
worst quality symbols within each block length as the ones which
might be in error. Since we have such flags in many systems (i.e.,
E,  levels, signal format violations, etc.) soft decision is quite
p0551b1e. Also as n increases, it becomes easier to correctly
determine at least some of these highly likely error symbols. By
somewhat knowing some of the error locations through soft decision
capabilities, the decoder can now work on not only T<t errors, but
also T>t errors! The overall error correction capability
increases! ’

A correctly designed decoder using soft decision (e.g., using the
symbol erasing capability of RS codes) should yield better
performance than running the data only through a RS decoder without
soft decision. :

THE DECODING PROCESS USING SYMBOL ERASING IS A THREE-STEP PROCESS:

1. Calculate the syndrome components and the modified
syndrome components.

2. Calculate the error-locator word for the error locations.

3. Determine the decoded error pattern and correct the
errors in the received word.

5.1 RS CODING USING SYMBOL ERASURE

'ﬁ
+
T

n recsasived
e S Nt e ¥ Ve WA

Ift i 9

code symbols R; as unreliable, then these symbols are treated as
erasure symbols, AN ERASURE SYMBOL IS DEFINED AS AN ERROR SYMBOL
whose erasure location x;" is known to a high degree of probability
from the demodulator {and therefore the corresnondlnc erasure value
y;" is known to a low degree of probability from the demodulator).
If we accidentally flag an error-free symbol as being an erasure
symbol, the soft decision process can still decode properly! We
can pass any erasure symbol RJ' to the decoder and the soft

decision process can also still decode properly! Symbol erasing is
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NOT deleting symbols, but rather erasing them. Symbol erasing is
erasing some received symbols NOT the entire received word. Symbol
erasing can be, but is usually not, working within the gray zone.
It is possible to increase the SNR a littie by NOT necessarily
resetting the erasure symbol R;" to zero! THIS CHAPTER ASSUMES
THAT THE DEMODULATOR PASSES WHATEVER ITS BEST ESTIMATE OF THE

RECEIVED SYMBOL VALUES ARE TO THE RS DECODER.

The reason why the symbol erasing issue may be important is that
the power of the error correcting code increases. The upper limit
of T=2t error symbols can be ‘reached if all 2t errors can be

amom mmtaaamon Tl mwr -~ Lare Aamamrsleo mlerm § o SRS

L.LaggE'.u as erasures. However, there are a few drawbacks. First of
all, correcting erasures requires many times the computational
. capability. Secondly, in some systems the accuracy of the
demodulator to correctly determine the erasure status may be too
low for substantial increased system error correction; in fact, if
it is poorly dpq‘lanpd it may even decrease the system's error

““““““““““““““““ S = -Ta ~

correction capablllty.

A coding system which corrects erasures can correct up to t; errors

and t " erasures if 2t +t. " < d-1 where the distance d < 4 For
= “min®

RS codes, we can correct all t, errors and all t. " erasures if
2t +t." < 4,1 or rather 2t +t. " < 2t.

For a (15,9) RS code: _t. (errors) t. " (erasures)
0 6,5,4,3,2,1, or O
1 4,3,2,1, or O
2 2,1, or O
3 0

To explain how the RS code can correct T>t error symbols using
erasure, assume the demodulator flagged the X’ and X? locations as
being unreliable. Therefore, by the demodulator's particular
algorithm and symbol quality data, it has decided that these were
erasure symbols; the X’ and X? locations are considered _to be
erasures. In our previous (15,9) RS example which has T=2 error
symbols at the X® and the X% locations, the RS code, besides
correcting the two errors, could have corrected an additional
" < d-2t, = 2 erasures. Assume a similar case as in the previous
(15,9) RS example, but with two erasures at the X’ and the
X2 locations with two errors at the X® and the X'=X locations.
Remember that ERASURES ARE ERRORS whose crasure locations are
probably known for sure and whose erasure values are probably not
known.

Tot+ +has eosmnmn Mmocen
LSw g€ Salie es55a

T g s c
chapters 1,2,3, and 4. The following is our (15,
example
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M(X) = o'
c(X) = a"X + a®xXP+a"0X4+at X3+ X2+ alX+a '

Assume more than t errors were injected into the code word, i.e.,
assume T>t. A system without symbol erasing capability would not
be able to correct the received word because T>t (except for a few
rare complete decoding cases). Usually, there is only a high
- S TR P - L Amd o ~de e AT v  on ommrt e 41~ 2 mensvde [ el -
LJLUUOU.L.L.LLX VUL CLLUL ucLeuL L LUll. NOW asSoulile Lllie Llipuc (9 vile

demodulator to be some type of modulated "channel symbols" which
represent the following: '

R(X)' = XBam2ny? 4 oBySiql0yispbéylinpny2indye g2

very weak and noisy "channel symbols"

The output of the demodulator is equivalent to the input with some
or ail of the poor gquality locations flagged as erasures. Also,
the demodulator should pass its best guess of the value at each
location because sometimes it may guess correctly. In other words,
the following is given:

R(X)" = X%4a’X” + o®%5+a'%%%+a*X3+a3X%+a%X+at?
SURES (unreliable code sy'rrbolsl

fter ) ¥ is processed by the RS decoder with erasure capabiliity,
the following code word should result:

c(xX)" = a"X7 + aBXP+a'¥% a3+t X%+ alx+a’? = C(X)

In summary, since C(X)" can equal C(X), it is possible to correct
T>t error symbols if some of the poor quality locations can be

determined to be erasures. In fact, if all the actual error
locatinng are bnnmn thug all the errors are eracsures, the code can

amamwwl waiis QAT Ssaawwaas —aavanS AR N de e W S e Ty —ha widaa

correct up to a max1mum of T=2t error symbols. This particular
example with four errors (two errors plus two erasures) will be
completely decoded in sections 5.2 and 5.3; T=4>t=3 in our
(15,9) RS example.

The following figure and table illustrate the architectural
differences between a RS coding system with and without erasure;
also see figures 3.1-1 and 4.1-1 and tables 3.1-1 and 4.1-1.
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M(X)—/— >l m / >
1 1 > 4 n-k a
Xmk—/—>| t i / >| d
v CK(X) is d
i the n
n-k+1 d remainder = /> c(x)
g(X)—/—>| e
REED-SOLOMON ENCODER
NOISE
i
. n
modulator . channel demodulator ||—/—> R(X)"
C(X)—>| OR —>lI OR —>|| OR
writing storage reading "
unit unit unit —/—> x"
c(x)" k
D F—>l—/—> M(X)"
R(X)"—> > E
+ > M n-k
L—>| calculate |—> U —> /—> CK(X)"
x;" > > -E(X)" X (optional)
REED-SOLOMON DECODER
(WITH ERASURE CAPABILITY)
Figure 5.1-1. - RS coding block diagram with erasure capability.
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TABLE 5.1-1. = RS SYMBOL ERASURE POLYNOMIAL DEFINITIONS

received word R(X)" in an erasure system consisting of received
symbols R,':
R(X)" = C(X) + E(X)
[(Cpy#E )X + (C 4B L)X"2 + ... + (C+E)X + (Cy+E,) ]
= R,"X"V + R ,"X"? + ... + R"X + R"

erasure positions x;":

x," = X for i = 1,2,...,t," AND for j defined from the
demodulator where t, = number of errors, ts" = number
of erasures, and 2tE+‘tE" < 2t.

decoded error pattern E(X)" in an erasure system consisting of
error locations x; (which can include erasure locations x; ;") and

error values y; (which can include erasure values Yt
"
E(X)" = yx, + YoX, + oo 4+ ¥IX
decoded code word C(X)" in an erasure system consisting of code
word symbols C.": _
C(X) " - R(X) " E(X) "

= R()" + E(X)"
= X"KM(X)" + CK(X)"
wnkaerswry o whekarzery 1o

XTMX)Y" + XTTM{X) " mod g( {)
L S L L A
- n-

X + Cp"

decoded message (or data or information) M(X)" in an erasure system
consisting of message symbols M":

VAV AT | By Ilvk’1 ] ~ livkz 1 [TEY 2 ~ ”
rig\a) “hag & T LA + ... F Ln-k+1 A T+ Ln-k

=M nxk-1 + M ank-?. + + M.,"X + MM
k-1 k-2 ¢ 1 0

decoded parity-check CK(X)" consisting of check symbols CK;":

CK(X)" = ¢ nyn-k-l o o nyn-k-2 + C."X + CM
AN\ 42y . n k. n k 1 \' k-z n k 2 L B 1 o
- n nwyn- " "
CK, -4"X + CKﬂ_k_2 X +...+ CK"X + CK,

5.2 RS ENCODING USING SYMBOL ERASURE

The encoding procedure for RS codes using erasure is identical to
RS codes without using erasure (cno chanter ’2\ . This is due +o the

MLAT S W a waiVe - iy alQloua ST il eTa

fact that symbol erasure is soft dec151on, but only at the
demodulator and decoder and not the modulator and encoder. Because
of this and the discussion in section 5.1, the message and code
word are M(X) = a''X and Cc(X) = a''x7 + RN I Y
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5.3 RS DECODING USING SYMBOL ERASURE

In order to demonstrate the increase in error correction by using
symbol erasure, the decoding operations are demonstrated for the
(15,9) RS code example as discussed earlier in sections 5.1 and
5.2. In the following sections within 5.3, all the decoding
operations for the received word R(X)" = Xe+alx? + a®X5+a 1% 4+ a4 X3+ a3x?
+a’X+a'? will be shown. For learning purposes, R(X)" was made very
similar to the R(X) for the nonerasure (15,9) RS example found in
chapters 3 and 4 and appendlx Ci R(X) gortier exampte = X+a''X” + of%3
+a' %44+ o X3+ a3 X2+ alX+a 2. -

THE DECODING PROCESS USING SYMBOL ERASURE IS A SIX-STAGE PROCESS:

1. Calculate the 2t syndrome components from the received
- word.

2. Calculate the 2t-t." modified syndrome components from
the syndrome components and the erasure locations.

3. Calculate the t, error-locator coefficients from the
modified syndrome components.

4, Calculate the t error locations from the error-locator
numbers which are from the error-locator word.

5. Calculate the T~t t error values and erasure values
t

from the error- c r numbers and the erasure-locator
numbers.

6. Calculate the decoded code word from the received word,
the error and erasure 1ocatloﬁs, and the error and

erasure values.

5.3.1 Eﬁasure Determination

Assume the received word has the errors and the erasures a
presented in sections 5.1, 5.2, and 5.3. The summarized results
are placed in table 5.3.1-1.
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TABLE 5.3.1-1. - CODE WORD C(X) USED IN (15,9) RS ERASURE EXAMPLE

Code Received Received
word word word
Location symbol symbol symbol Erasure capability

(x,) c,__ R, R," (without —> with)
x8 0 1 1 erYor —> erroxr
x7 a'l ? ?=a’ error —> erasure
x2 a't ? ?=a3 error —> erasure
X b a’ ‘o error —> error

So therefore assume our new received word has two errors and two
erasures.

R(X)" = X%4a™X" + a®X’+a""%*+a*X3+a3%X%+a % +a 12

i ERASURE | ERROR
ERROR ERASURE

Because we are now handling two "errors" and two "erasures," the

code is actually correcting T = t+t. "= 4 error symbols greater than
t=3 error symbels, but less than, or equal to, 2t=6 error symbols!

Do not confuse T = t +t." and 2t+t." < 2t with T<2t; T can equal 2t
when t.=0.

5.3.2 Syndrome Components S;

The first stage is to calculate the syndrome components S.. For
our example, FCR=1 and a%=a'. R(X)" = XB+a’X” + afX5+a X4+ X3+a3xX2+
a”X+a'2,

S, = R(a)" = a® S; = R(a)" = o Sg = R(a®)" = o

S, = R(a®)" = o S, = R(a*)" = o S, = R(a®)" = o'

Since not all the S; are zero, then we know that T=t +t.">0.

5.3.3 lodified Syndrome Components St

he second stage is to calculate the modified syndrome components
" from the syndrome components S; and the erasure-locator
coefficients ot
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t-"

E .
S" = zo ri"Si_j for i = tE"+FCR,tE"+FCR+1,...,2t+FCR-1
‘:

From the demodulator, x(“ﬂ@ (or zf“ﬂx because af a) and x'“ﬂﬂ (or
zz"—a because a-—a), therefore, t."=2 erasures are given. Slnce we
are going to use t"=2 erasures for this example, ho pefully
tg<2 errors; t; < (2t -t.")/2. If we later determin that
t>2 errors, then we can decrease our t": e.g., if t,=3, then
t g'S2(t-t;) which for this example would be t."=0.

It does not matter how the 1locations are assigned to the x".
However, I prefer lower locations to correspond to lower indices
and higher locations to higher ones (i.e., X, "=x2 and xzw—x7 not
X,"=X" and x,"=X?). The reciprocal of the erasure- locator polynomial
o +(X)"_is defined as having the erasure-locator numbers 2" as its

roots.

t."
o (x)" = If (% + zm)
O (K)" = (X + z,") (X + z,")

(x + aé) (X + a7)
X2 + a2x + of

Therefore, o (X)) = X%+a?x+a’ and so e1"'-oz12 and ez"—a9 because
o(X)" =0 "Xz+a "X+1. Since o 0'=0, is defined to be 1 and therefore,
the o" 1s deflned for i=o, 1 2,...,t ", we finally determine the
modified syndrome components S5;".

Substituting values:

S;" = S; ¥ 0,"S, + 0,"S, = o' + ¢ + %2 = a" + @ + of = o
= T

St = Sl 4 oS+ o) - o)

S5 = S5 + 0yS, + 0,15y = af

S¢" = S, + 0,"Sg + o,"S, = a

Therefore, S;" = a'd, S = a'?, Ss" = a®, and Sg" = al.

5.3.4 Error-Locator Coefficients gy

The third stage is to calculate the error~locator polynomial o (X)
from the modified syndrome components. For instructional purposes
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we set up our example for t.=2.

te- .
E .
S" =3 S.. VYo for i = T+FCR,T+FCR+1,...,2t+FCR-1

i =0 HJ-tE tE-j

M-

Siﬁ = si*j_zﬁoz_j for i 5,6

=0

11} " - 11}
Ss"o, + S,"g, = S,
QW 4 g "n = Qmn
S T T S5 Oy Se

Substitution of values is shown below:

R,
Q
Q
1
+
R
-
=4
Qq
I
R R

Therefore, g,=a'® and o,50” and so o(X) = o'%x%+a'0%x+1.

5.3.5 Error lLocations X;

The fourth stage is to calculate the error locations x; using the
roots of the reciprocal of the error-locator polynomlal o.(X).
Determine the error-locator numbers z;, from o (X) = X%+a'%Xx+a®.

[+

o.(1)
o.(a)
o(a%
o, (a)
o (0)
o (as)

Q

-

A

R

o

A d

mwmnnnn

ORNR R RRRLROR

B T S B

o o

3
-
2
1

o' in our example, the

“r PP, | 1’5
A aAila A .

The fifth stage is to calculate the error values Y;- At this point
there is no need to make a distinction between errors and erasures.
Therefore, rearrange the indices such that the 1lower ones
correspond to the lower locations. BEFORE: T=t +t."=4 errors and
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erasures, z,"=a?, z,"=a’, z,=a, and z,=a® (and x,"=X?, x,"=X’, x,=X, and

x,=X%), and y,", y,", y,, and Y,- AFTER: T=4 errors, z,=a, z,=a?,

z,=a’, and z,=a® (and x,=X, X,=X*, %;=X’, and x,=Xx%), and y,, Y;r Y5, and
Y,- Now sclve for the error (includiﬁg erasure) values.

1 ' .
Sy =2, y;z;' for i = FCR,FCR+1,...,T+FCR-1 = 1,2,...,T

The following are the set of the independent NON-LINEAR
simultaneous equations:

Y129+ YaZ, t+ Yizz + vz, = S,
Y122 + ¥,2° + v3258 + v,z = 5,
Y123 + ¥,2° + Yyz50 + v,z = s
Y12y +Y,2° + vizgt + vzt = s,

Substituting values, the set becomes a set of independent LINEAR
simultaneous equations’:

0Y1+°"'Yz+ "‘Ys'*“"Yl.=°‘i
ay1+ay +a‘y3+ ay,.=a"
ay1+a5y2+ ay3+ay‘=a"
ay1+a°y + aPy; + o?y, = o

Therefore, y,=a%, y,=1, y;=c®, and y=1.

5.3.7 Decoded Code Word C(X)"

The sixth and final stage is to construct the decoded code word
C(X)". The error locations X, and | X5 were determlned in section 5.1
and again in section 5.3.1; —X‘ and x—x . The error locations
X, and x, were determined in sectlon 5.3. 5 x,=X and x,=X8. All the
error values y,, Y,, Y3, and Y, were determined in sectlon .5.3.6.
Using erasure, the decoded error E(X)" is simply the X; and the y;

11
as focllows:

E(X)" = .‘21 YiX;

E(X)" = ylx1 + yzx2 + y3x3 + y,.x,.
’x + 1Xx2 + af%x” + 1x%8

- wBiA8v7 2, 412
= X%+a®%" + X%+a'%x
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The decoded code word using erasure is:

C(X)" = R(X)' + E'(X)"
= 1xX8407X" + o®¥0+a'0% 40t 3+ a3 X%40f X+a'?)
+ [XB+aBX7 + X2+a1?X]
(A+D) X8+ (0B X7 + oBXP+a'0% 4+t X3+ (a3+1) X%+ (a¥+at?) X+a'?

1}

Therefore, C(X)" = o''X7 + o8P+a'0%%+0b%3+0" %2408 +0"2, From
section 3.3.2 or sections 5.1 or 5.2, C(X) = a''Xx7 + oa®XP+a'%%*+a X3+

a¥x%+a®X+a'2. Therefore, C(X)"=C(X) as expected!

Strip the message field from the corrected data. Therefore,
M(X)" = Cn,1"X"'1+Cn_2"Xk'2+. e o +C, "XHC " = a''X. From sections 3.3.2
or 5.1 or 5.2, M(X) = a''X. Therefore, M(X)"=M(X) as expected.

Strip the parity-check field from the corrected data. Therefore,
CK(X)" = C. "Xk Nc | XK 24, L 4C"X+C" = o®XP+a'%%X 4+ X3 +a X+ alx+
a'?. From sections 3.3.2 or 5.1, CK(X) = a®X5+a'®X%+a*X3+a"x2+alx+a'?.
Therefore, CK(X)"=CK(X) as expected.

Therefore, we correctly decoded our (15,9) RS example with T>t
error symbols using erasure capability! In fact, we pushed T to
the maximum error correction capability of an erasure system for a
particular value of t,. If t, were a smaller value, then we could
have somehow picked more erasures (even if the demodulator was so
called happy enough); this! should also increase the SNR slightly.
If t. were a larger value, then we would have to pick fewer
erasures.

5.3.8 Determining t in a Symbol Erasure System

For instructional and clarity purposes, the preceding sections
ASSUMED t.=2. 1In this section, we will again learn how the decoder
can determine the value of t, using MLD.

In our example worked in the preceding sections, the decoder was
given t,=2. 1In real life the decoder must determine t. using MLD.

It first assumes that t=0. If t=0 does not work, then it tries

E
= —1 T4 rranrne TRnAranscT e + { <4\ 1l 14 ~ar enlxra +ha
CgT ke i NneCPS il Tas sy - \p=ty il da P Qi SvaAve wiis
t L]

4+
equations to determine the value of t,

Let us now complete the work on the (15,9) RS erasure example. One
of the ways to determine t; is to first determine T. We could
calculate the 2t syndrome components and then determine an
error-lccator polyncmial using Berlekamp's iterative algorithm.
For our example with T<t, we obtain o(X) = a''X*+a’X?+a®X+1. This is
a third degree polynomial and only has one root, i.e., o(a®)=0 or
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a® is the only root. Therefore, since there should be three roots
and only one GF(16) root exists for this t=3 degree polynomial,
T>t. Since T>t then tE+t ">t and therefore ¢t >t-t." or t>1'

facerims ney
faoouiiaiily aaia  uiic

can proceed and try
sections 5.3.4, 5.3.5,

AAAAAAAAA [a e} IR
all the erasures are non-error-free symbols) . Then we

2 and work the problem as shown in
3.6, and 5.3.7.

3 =il b R = g U R 2 AL W

+haAa
=t +t "=2 locatlons, and thus o(X)=0; we do not need to complete
the second, third, and fourth stages. We need to determine the
erasure values y," and y," which at this point we simply denote as
the error values y, and Y;- We solve for the error values as shown
in section 5.3.6 and this results in the following set of
equations:

\nother way to determine tE is to first assume £ =0, If + =0

=

Y42y t+ Y,2, Sy
i YiZid + Y2 = S,
Y2y + ¥,2,° = S5
y,z," +.¥,2," S,
Y2y + ¥,2Z,° = Sg
Y120 + ¥,2,° = 8

We choose any T=2 equations to solve for the T=2 unknown Y.

Y424 * Y2, = S,
Y122 + ;27 = S,
Therefore, y;=e¢’ and y,=a'? with z,=z,"=a? (%,=%x,"=X?), z,=z,"=qa’
(x=x,"=X"), S;=a", and s,=c. We then form our deccded error
pattern E(X)" = y,x; + y,X, = &°X? + a'®’. The decoded code word
C(X)" = R(X)" + E(X)" = XBra?x’ + o®XP+a'%%%+a X3+ ax?+a’%+a'?, but this

is not a valid code word! It is not a valid code word because the
syndrome of C(X)" is NOT zero, e.g., the third syndrome component

of C(X)" = C(c*)" # 0. Therefore, t,>0 errors occurred.
Next assume t=1. s = S,,"o, for i = 4,5,6. 0,=8,"/S;" which
should be the same as 0,=S;"/S," and o0,=5,'/S.", but is not!

Therefore, t>1.

Now we try t.=2 and work the problem as shown in sections 5.3.4,
5.3.5, 5.3.6, and 5.3.7.

We should note that if t.>2 in our erasure example, then we would
continue the MLD process for increasing values of e (tst). In our
example, if we increase t. past t.=2, then we would decrease t" by
two each time that we would 1ncrease t. by one; 2t +t "<2t.
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5.4 SUMMARY

In chapter 5 the Reed-Solomon code with symbol erasure capability

—_ 4+ 21+ arrnr rm
= T,.TC S L CLALVL S}mbo.‘}.s'

This is because we are able to take our original message M(X),

append check information CK(X) systematically to it, send it,
corrupt it with noise, receive it, send it through our demodulator
with symbol erasure detection capability, and then decode the
received vector R(X) back into our original M(X). Of course,
symbol erasure systems can alsoc correct T<t error symbols!

.
p]

(o)



APPENDIX A
RS _HARDWARE ENCODING DESIGN

This appendix will step us carefully through a common SRC
implementation to perform the RS encoding process. RS encoders are
usually implemented using a SRC.

A.l1 (15,9) RS SHIFT REGISTER ENCODER CIRCUIT

To develop a RS encoder, a SRC is usually used. Figure A.1-1 shows
the SRC 'for our (15,9) RS example where g(X) = X+a'"X’+a'x‘+a*x3
+abX%+a’%+a®. Other RS codes can be implemented in the same manner.
As in most, if not all, of encoder/decoder systems (codec systems),
the encoder is the easy part to understand and to apply into
hardware.

There are a few notes on the operation of the encoder circuit
within figure A.1-1: When the switches are open, their outputs are
all pulled to zero. The exception is when the switch outputs are
the inputs to the output shift register; then, they are open
circuited.

Table A.1-1 presents the procedure necessary to operate the
(15,9) RS encoder which is shown in figure A.1-1. The figure after
figure A.1i-1, i.e., figure A.1-2, shows the bliow up of the output
shift register.

TABLE A.1-1. - (15,9) RS ENCODER PROCEDURE

Step 1. .Clear feedback shift register [X'=X'=...=X*"'=0].

Step 2. Enable switch A and disable switch B.

Step 3. Clock the information symbols into the circuit, most
significant symbol first (clock k times).

Step 4. Disable switch A and enable switch B.

Step 5. Clock the check symbols out of the circuit (clock n-k
additional times).

Step 6. The resultant code word is in the output shift register.

Step 7. GOTO either Step 1 or Step 2.
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g(X) = X4+a"%+axi+ o X3+ abX+ X +ab

Figure A.1-1. - (15,9) RS encoder

> MULT BY g,=a® X0 > —
+ >| x
>| MULT BY g,=a’ >
>
+ —>| x?
>! MULT BY g,=a® > —
- —
+ —>| %3
>| MULT BY g,=a*
—>
+ > x4
>| MULT BY g,=a'¢ >
-
+ >| X3
>| MULT BY g,,_,=gs=a'’ >
sw Al
—>
+ >| sw B ——>| OUTPUT
>| sw A2 > SHIFT
: REGISTER
>l (1ss) (mss)
M(X) C(X)

<

shift register circuit.

~04—
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I D G "I D' I D' D' G DU B I b G D' G D U DL D b O
RS Parity-

<—— Check Symbols >|< RS Data Symbols —>

least significant symbol most significant symbol

(last byte transmitted) (first byte transmitted)

CCSDS BYTE 0 (zero) CCSDS BYTE N-1

(LSB) (MSB)

Figure A.1-2. - Blow up of the output shift register.

In an attempt to explain the different states of the hardware in
detail, tables A.1-2 and A.1-3 are given with message M(X) = a''X.

Case

WP J00 & WNKHO

MR
U WO

TABLE A.1-2. -

m R R X

o
=S

|
1
I

[

1l

I

i

i

il

OCR OOO0OO0OOO0O

DBACK SHIFT REGISTER STATES

FE

Feedback Shift Register
X x'  x2 x3  x

XS

i

OQQQQQQQDOOO‘OQOOOO

12

OO0 0000 RNRNROOOOOOOO
QO0OO0O0D0RNRNROODODOODOOO
COO0OO0ORNRNRNROOCOOODOOO
OCOOO0ORNRRARRIMLOODOOODOOO
OORRKRARRROODOOOOOO
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TABLE A.1-3.

- OUTPUT SHIFT REGISTER STATES

Ooutput Shift Register >
gase 1 X XZ x3 Xlo XS xé X7 X8 X9 X‘IO X‘H X12 X'B ,X"'
0 -—— - - - - - —-—— —-— - pep— —— o - - —— - [ep— - —
1 0 == == m= e mm e e mm em e e e e e
2 0 0 == == == o me me me me me me ee e oo
3 0 0 0 == == == ce me c= ee e ee e e e
4 0 0 0 0 == == == ee e e me ee e e oo
5 0 0 0 0 0 == == == == =co co oo o0 oo o=
6 0 0 0O 0 0 0 == == == o= e oo e cm -
7 0 0 0 0 0 0 0 == == == o= oo oo oo oo
8 «a 0 0 0 0 0 0 0 == e= em ae e e o
9 o " 0 0 0 0 0 0 0 == .= .. am ae -
10 e® 0o ™ 0 0 0 0 0 0 0 —= == = = -
11 a® a8 0 o' 0 0 0 0 0 0 0 = em- - -
12 * a® o® 0 o 0 0 0 0 0 0 0 - .- --
13 ¥ o 2 o® o o 0 0 0 0 0 0 0 - --
14 @ a% o* a® o® 0 2 0o 0o 0o 0 o 0o 0 --
15 a2 o8 a% o* a® a8 0 " 0 0 0o o o o0 o

It should be noted that the code word C(X) is the value in the
in this example,
This checks with the earlier

output shift register during case n;

C(X) = a'X+a®X5+a'0%*+a* X3+ “X%+alX+a'2.

calculation for C(X) within chapter 3.

M~
140

—:.-;1 -t en Yoo

expiai

-

110

equations and sampl
derived from figure A.1-1:

" Caca
- G d

0 0

£

X1

w2
‘h

::n

.1-2 and A.1-3

calculations are glven

Case 1 through case k—9:
(x5 g+ M(X))a

i

e
"10ld '
XZ aq ¥
X3old +
iwm +
“* old +

(xS
\“sold
(X old
ld

5o
( old

* oid

+

+ + + 4+

X3

x*

k+1=10 through case n=15:

= Xom

mn

iton

xf
X2 d

D‘

n=15% so

ese are simply

~0G-
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Working through some of the calculations:

case 0:
XN=x=x=x=x*=x=0

Case 8:

XU = (Xsold+M(x))a6 —_ (0+a11)a6 - (aﬂ)aé - a2
X' = x0  + (X5 #MX))® = (aMe® = 4o°

2 = x° 5 6 — (A My A6 — 2

Xz ol T (x5°‘d+M(X))a4 _ (au)aa -2

o eta T (XM (X) Y= () % = Ly

X T Xt (x5°‘d+M(X))a1o _ (an)dw _ %
X=X+ (XM X))e” = (') =2«

Case 9:

X0 = (X5, M(X))a® = (o + 0)ab = (ab)ab = W
X = X0+ (X M(X)) e’ = o+ (af)o® = of

X2 = x' .y + (X *tM(X))a® = a® + (ab)a® = o'

X2 = X4+ (O #M(X))at = + (a¥)ob = o

Xt = Xsold + (Xso(d+M(X))a14 =1 + (aé)a"’ = '

X = Xy + (O M(X))'® = o' + (af)a" = of

Therefore, CK(X) = a®X’+a"%*+a*X3+a"X2+adX+a'2.

The parity-check symbols are available in the feedback shift
register after the message symbols M(X) have been clocked into the
circuit k times. Cases k+1 through n simply shifts these check
symbols out of the feedback register and into the output shift
register which already contains M(X) at that time.

A.2 OTHER RS SHIFT REGISTER ENCODER CIRCUITS

CK(X) = kM(X) mod g(X). The hardware can take care of the time
delay by just piecing the data fields together at the proper time.
So our input can be either X"*M(X) or just M(X) to determine the
following hardware decoder. The following SRC is of the same
lad-0 | -

: ]
. an

2 - - e — - - -
310is configuration as figure A.i-}i.

+rn-
A
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g < S
L | _gl

L'> CKy —>| SUM |—>| CK

Q

—

y [>...>| suM —>| ¢k, —>| suM

INPUT = X"*M(X) = M(X) — '

Figure A.2-1. - Encoder SRC using CK(X) = M(X) mod g(X).

CK(X) = X"*h(X)M(X) mod (X"+1) because h(X) = (X"+1) / g(X). The
following circuit is using this parity-check polynomial h(X)
instead of the generator polynomial g(X): h(X) is related to g(X).
The circuit is initially loaded with the M;. Notice that this
Fibonacci configuration uses the reciprocal of h(X) to dictate the

. . .
sequence of the coefficient connections.

SUM |<— SUM |[<—...<— SUM |<— sSUM |<—n

—>( M, >| M, >eo o> M, >| M

k-1

— > OUTPUT = CK(X) = X"*h(X)M(X) mod (X"+1).

Figure A.2-2. - Encoder SRC using CK(X) = X"kh(X)M(X) mod (X"+1) .

Besides the Galois and Fibonacci configurations, there are others
which require substantially 1less hardware. One of these
configurations which is more closely matched to the hardware is the
Bit-Serial Reed-Solomon Encoder by Elwyn R. Berlekamp. The Galois
and Fibonacci configurations are more straightforward from a
mathematical and more easily understood viewpoint. However, the
Bit-Serial encoders are more efficient from an implementation
viewpoint. If there is further interest in Bit-Serial encoders,
Please refer to the references section.
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APPENDIX B
RS HARDWARE DECODING DESIGN

If one only views the coding system as a mapping and demapping
procedure and tries to design a look-up-table hardware circuit, one
is in for a big surprise. This type of design is impractical
because it requires a ridiculous amount of memory; Table B-1
testifies to this fact. We need a better hardware design than this

family of designs!

TABLE B-1. - MEMORY TABLE OF A LOOK-UP-TABLE HARDWARE CIRCUIT

€ode: RS encoder ___RS decoder
(n,k) 2™ X m(n-k) bits 2™ X mk bits
(3,1) 4 X 4 bits 64 X 2 bits
(7,3) 512 X 12 bits >10% X 9 bits
(7,5) >10* X 6 bits >10% X 15 bits
(15,9) >10"0 x 24 bits >10® X 36 = bits
(255,223) >10% X 256 bits >10”™ X 1,784 bits

The decodlng hardware could simply be a combinational logic circuit
as in figure B-1. The S; are an EXCLUSIVE-OR (XOR or SUM or %)
function of R(X), the X; and the y;, are an AND function of the Sis

the E(X)' is simply the X; and the yi with zero padding, and then

finally C(X)'®' = x(x)+n(X)' But for large codes with a lot of
error correction capability, this circuit is also not practical.

(n-k)/2
: />
n’ n-k X, ZERO n -~
R(X) / >! XOR [—/—>| AND PAD /
R; S; (n-k)/2 - E;!
>
Yy
> n
XOR |——/—> C(X)"'
> c,!
Figure B-1. - Combinational RS decoding circuit.
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RS decoders are very complex compared to RS encoders. RS decoder

circuits wusually employ dedicated processors using parallel

processing techniques. 1Low data rate decoders, especially post

processing designs, can be done using sequential techniques. High

data rate, real-time RS decoders usually require parallel

processing designs. Since most decoding applications are ones with
1 Lot afaVal

.
fa fForm Nnf naralla Mmoo
Contll’“‘"‘“c ‘Ihp'l'l‘l“c, Cften p’pellll.l.lg V& L UJ. Hu&u.l..l.cd. BLU\,:_DD.LJIK_’]

is easily applied to the sequential stages of RS decoding. If the
stages themselves can be partitioned into more of a parallel
processing architecture, then even higher data rates along with
lower decoder processing delay can be obtained without

interleaving. The follow1ng sections concentrate on some general
design considerations for dedicated and pipelined architectures.

B.1 BCH SHIFT REGISTER SYNDROME CIRCUITS

The SRC to calculate fhe syndrome s(X) = sh_xa’ + ..o+ 85X + 5
can be as simple as one of the previous encoder circuits w1th the
input being R(X) instead of M(X). The syndrome components S; are

then found as S; = s(a') by additional circuitry.
1 % [< [ [
g4 In-k-1
] |
>l s; —>! SUM —>| s, —>...—>| SUM > s ... —>| SUM

INPUT = R(X)

Figure B.1-1. - Syndrome SRC using s(X) = R(X) mod g(X).

We can also send the R(X) into the front of the circuit, but with

— -k)shift
S(X)rcgister S(X) tn-kosht ]’
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\Q

L] =

«Q

=3
"
—_—
0
-

SUM [—>| s, >| suM —>| s, (>...—>| SUM |->| s,

t
L—— INPUT = R(X)

Figure B.1-2. - Another syndromé SRC using s(X) = R(X) mod g(X).

so be found directly after R(X) has been completely
rough the fg]_lgwing SRC. This SRC also demonstrates that

EAS asrda ViAlw QaAovy WMTanviaio wa QLT o vaiQ o

dividing a polynomial by (X+a') is the same as evaluating it at af;
).

(11 <
R(X) —>| = —>]| s,
Filgure B.1l-3. - Syndrome SRC using S; = R{a').
B.2 GENERAL HARDWARE CIRCUITS FOR a''al = of

Instead of calculating the remaining decoding steps using only a
microcomputer and software, one should consider designing the
decoder using more pure hardware, i.e., ROM's, SRC's, XOR gates,
AND gates, programmable gate arrays, microslice processors, etc.

al + al = o1 We already know from sections 1.3.1 and 1.4.5 that
addition can be performed using m XOR gates on a tuple-by-tuple
basis.

acostentgl = gF:  We can multiply by a single constant «®™Y™ by using
m XOR trees. These trees are also designed on a tuple-by-tuple
basis using such design tools as Karnaugh maps.

a’el = of: We can multiply any two field symbols together by
multiplying and then reducing both the o' and o’ polynomials’
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representations together using algebra. Then, we can build the
hardware using just XOR and AND gates for each binary tuple. That
is, let o' = iz + i,0® + i@ + i, for i, = either 0 or 1 and
j =0,1,2,...,m-1. Let o' be 1likewise defined. Then, the

following relationship occurs using the F(X) and a(X) that we used
in our (15,9) RS example.

_ i+ _ 0 » 0 » . [] Y (3 L3 3
alel = of* [(1935+143,%153+153y) +1335]a
+ [ (igj2+i1j1+izjo)+i3j3+(i3j2+i2j3) ]az

+ [(1pJy+iyd) + (133,+1535) + (4435+1,3,+153¢) Ja

+ [(dgdg)+(i,35+1,3,+453,) ]

a'al = ¢¥: We can multiply any two field symbols a' and o/ together
by using two m-by-m ROM tables to find the logarithms of a' and of
which are i and j. Then, we can use an end-around carry adder to
ADD and reduce i and j modulo n. After this, use another
m-by-m ROM table to take the antilog of K=i+j to determine of = ai*!.
In this circuit neither input can be 0=a®; however, this can be
designed around.

a'al = o Multiplying @' by @’ can also be performed in a manner
similar to dividing one symbol using its polynomial representation
by the other symbol's polynomial representation. This circuit is
similar to the encoding circuits, but use F(X) to determine the
taDS of the SRC. Load the SRC with al, clock i times to multiply
by of (i21), and the result is in the SRC. Each clock of this SRC
is equivalent to counting through the field, i.e., 1,a ,a%, ..., a™,
l,a, a?,...,a'. Another SRC which counts by alpha (equivalently
multiplies by alpha) is a m-bit parallel clocked shift register
with its output multiplied by alpha; use any previous circuit to do
the multiplication. Then, after the multiplication, send its
- output to the shift register's input. The result of could then be
stored in the SRC if desired.

al / a' = o: Division between two field symbols o' and o) can be
done by taking the denominator a' and sending 1t through a 2™-by-m
ROM. This determines its inverse af. Then, o} / a' = of can be

found by multiplying &' and af together using any valid
multiplication design. The denominator input cannot be zero.

a"/ o' = oX: Division can also be done by subtractlng logarithms.
We can divide any two field symbols a' and ol (except a'=0) together
by using two m-by-m ROM tables to find the logarithms of o' and ol
which are i and j. Then, we can use an end-around carry adder to
SUBTRACT and reduce i and j modulo n. After this, use another
m-by-m ROM table to take the antilog of K=j-i to determine oX = oi-f.
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B.3 DIRECT METHOD HARDWARE FOR o0 (X)

The direct method requires fewer calculations than the iterative
method for T = 0,1,2,3, and maybe 4 error symbols. So we may want
to have our hardware solve for o(X) using the direct method for
when a few error symbols are thought to have occurred. When a lot

of errors are thought to have occurred we should possibly use some

Alens a harAwuwara cuctram mi~h
other method applied into hardware. Also a hardware system might

run different algorithms simultaneously and the first one done
passes its o(X) solution to the next decodlng stage; this does not
seem synchronous and efficient.

B.3.1 Previously Calculated Determinants

In section 4.3.2, we start out trying to solve a t-by-t matrix.
If DET |So|, = 0, then we keep trying the next smaller matrix until
DET lSa]i for i<t is not zero; the largest non-zero determinant
determines how many errors is thought to have taken place (i.e.,
determines T). It should be noted that once the determinant of a
t-by-t matrix has been calculated, it is possible for all the
remaining determinants for the i-by-i matrix, i<t, to also have
been partly calculated. Thus, these results should be placed in a
temporary memory location and the hardware may be able to save time
or amount of hardware not recalculating terms of the smaller
determinants. Using the familiar (15,9) RS example (section
4.3.2), let T=2. Then, instead of choosing the first two equations
as in section 4.3.2, we will choose either the middle two or the
last two equations from the following:

540, + 5,04 = 54

Sza2 + 8301
530’2 + 8401
S,.o2 + Ssa1 = S6

nn
n 0
wo

Wo get either set of these equations:

Szoz + S3o1 = 34 8302 + S,.a1 = SS
5,0, + 5,9, Ss 5,0, + S50,

]
0n
o

The corresponding matrices are |Sol,, and |sal,,.

| | &2 | Isolye = | 828 |

50,5 S3 S, SOlss = | S S5

The determinants of these matrices have already been calculated and
stored into memory at the time when the determinant of the
t-by~-t matrix was calculated. It us show this. When 7T=t=3,

~103~ MSC-21834



we get some equations.

S,o3 + Szo2 + 8301
5263 + '5362 -+ 340'1‘ =
8303 + 5402 +‘_Ssa1 =

N n
[ RN

w

I Sy 5,
Q Q
t Y2 Y3

| s¢ g

The corresponding determinant is DET ISolv

n wnn
[V I )

w N
w

DET |So|, = DET

P

nnn
nnnm

S
S
S

1
2
3 Y4 %5

Let us calculate this by arbitrarily taking the determinant across
the first row.

3 S, | | s, s,
S

s s
= 8, DET | S, S | + S, DET | S; S, | + S; DET | S, §, |

o,
td
=

W
Q

I

S, S

2 Y%
DET |So|, = s, DET |Sol,, + S, DET l Ss Sq I + S; DET [Sol, 4
Notice that DET |50|34 and DET |Sa|23 was calculated when DET |So],
was calculated. Therefore, it is shown that some determinants of
a smaller matrix can be calculated if the determlnant of its larger

matrix has been calcu

lated.
There exists one way to calculate DET |So|, to be able to include

all the four equations (i.e., the 53¢5,/55, and S, equations in the

beginning of this sectiocn), but nn* a11 the comblnatlons of them.

Let us show this by contlnulng this example. Calculate DET |so],
by starting at the second row instead of the first.

S .
DET [So|, = S, DET | s X

N

S5 | | s
s; | + s, DET | 8

wvi Wi

| s.
| +s, b7 | s

[
n n

4

s
1
s, DET |so|,, + S; DET ' Ss

0 0

3
5 I + S, DET |so|,,

’

DET |sol,

]

Therefore, to save time and/or other resources by not recalculating
all the determinants' terms, select the particular equations which
correspond to how the DET |So| is calculated. Designing how this
is calculated might come in handy when designing the hardware. If
it's easy to implement, try not to recalculate something unless you
need to.
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B.3.2 Reduced o(X) Computations

There is a shortened method to solve the set of equations for o(X).
Let us use the dlrect method in section 4.3. 2, but reduce the
number of multiplies, divides, and adds. Follow the following

example which is similar to the (15,9) RS example with T=t=3.

w N
W

|so], =

»

S, §
S; S
S, S

N -

S
S
S

3

>~
w

DET |Soj, = 51[5355+(54)‘2]+Sz[SZst+Sssz.]+Ss[SzS4+(53;‘3
= 5,5555+5,(S,) 2+ (S,) 25,+5,5,5,+5,5,5,+ (S;)

And now notice that we can save 4 multiplies and 2 adds by noticing
that a'+a’=0 in modulo-2 math.

DET |sa], = S1S3SS+S1(S,.)z:f-(Sz)ZSS+(SS)3

o, = (DET |So|,)"' DET

Vs —]

4
Well, no terms dropped out here. Similarly, o, is found.

o, = (DET |sol
Z \ 1 |

Well, no terms dropped out here either. Similarly, but with two
terms dropping out, o; is found.

(DET |So|,) '[858,8¢+(5,)3+5,(S5) %+5,5,5,+5;S,Ss+ (S5) 2S,]

= (DET IScxlt)"[(s,.)3+sz(ss)2+szs‘sé+(ss)zsé]

Q
w
I

______ plies, 3 divisions, and 16 adds to

hi -1
solve for o (x) or ar(X) when T t in a (15,9) RS code using Cramer's
rule. If we care to do more algebra, we can find that we can
reduce the number of multiplies, divides, and adds even further.

B.4 HIGH DATA RATE RS DECODING DESIGN

There are real-time processing decoders and there are post
processing decoders. Post processing RS decoders are ones which
possess an increasing decoding delay as the number of errors to
correct increases. Typical post processing RS decoders are
software programs executed on most any type of computer.
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Post processing hardware are rarely designed for real-time systems.
This is because these systems introduce buffer overflow conditions
(or possible loss of data) and adds to the overall decoding delay
and complexity of the system. Real-time systems almost always use
real-time decoders. Real-time decoders have a fixed decoding. delay
which is usually small and is independent of the number of errors

to correct.

Real-time RS decoders usually take advantage of the pipelined
nature of the decoding stages so that high data rates can often be
accommodated without being forcéed to use interleaving techniques.
If we do not take advantage of these major partitions, we must wait
longer before we can start decoding another received word; if there
are long time periods between each received word, then the overall
data rate decreases. Pipelining techniques are often used to
design” high data rate RS decoders which are often found in real-
time systems. Pipelining is partitioning a sequential process into
many smaller processes.such that dedicated circuits efficiently and
simultaneously work these smaller processes in a sequential manner.
High data rate designs are similar to figure B.4-2 while low data
rate ones are similar to figure B.4-1.

a single,
sequential
processing

input circuit output
register which register
R(X) —> or

>| calculates
input the s,, output
buffer the o, buffer
the z,
the X4
the vy,
and

the C.'.

> C(X)'!

Figure B.4-1. - Low data rate RS single processor decoder.
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-(X) > i > i > “i i
—> : > C(X)!
Y; —>
>
>

If we have a low data rate RS decoder, then we might design one
encompassing processing circuit. This nirrlﬂ- would be responsible

e iNnls Lo 1

for calculating the Sir, 050 24, X;, Y;, and C;' for R(X) before it
would accept another R(X) to be decoded This single circuit might
be a general purpose microprocessor or a microslice processor or
comprised of many commercially available discrete parts or maybe
even some type of computer executing some type of software.
Figure B.4-1 demonstrates the single processor design. For a real-
time system, the input register must be at least as large as the
certain constant number of clock cycles required to calculate the
S;r 050 24, X, Y;» and C;' for the largest number of errors to
decode. Low data rate, real -time decoders also have larger input
registers than their high data rate, pipeline counterparts. For a
real-time system, the output register will contain the decoded code
word C(X)'. Due to the decoder delay, the registered output is
synchronously bursty, i.e., there are long time periods between
decoded code words. If it is desired to have a continuous output
data rate, then we can smooth the output either by designing a more
complex output register or by synonymously using a small first in,
first out (FIFO) memory circuit.

If we have a high data rate RS decoder, then we would probably
design a processing circuit with multiple processors. Each
processor would only work on a separate portion of the overall
process. Pipelining speeds up the process along with smaller input

registers and decreasing decoder delay. One processor would be
efficiently designed to spec1f1cally calculate the S;, another for
+=hAa A Lo Wl ] T

cne u{, and others for the Zi, X‘, _yi, and \'i . his pip'éliﬁé
process allows, for example, the new S; to be calculated
simultaneously while the o; from the old S, are being calculated.
These multiple processors might be SRC's, dedicated hardware, or
comnerci ‘rﬂ]v available pProcessors. 'F‘1r'n1'r°p B.4-2 demonstrates this

=i Lildall ava llialls <~ eosVaA s

multiple processing (really parallel proc9551ng) circuit. For a
real-time system, a pipeline design can be designed without an
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output register; if the parity-check symbols are not output [i.e.,
only the message symbols (and possibly a decoder status word) are
output] and a continuous output data rate is not required, then an’
output register is not needed to smooth the output. Real-time
processing RS decoders usually require registers (i.e., small time
delays before some pipelined circuits) while post proces.lng RS

decoders usually require buffers and/or files.

A typical pipelined, high data rate decoder often uses SRC's to
implement each stage. The SRC to calculate the S; can be almost
the same as the encoder circuit (see section B.1l). The SRC to
calculate the o, is often patterned after Berlekamp's iterative
algorithm and Euclidean greatest common divisor algorlthm. The o,
determination is the most compllcated and usually requires the most
processing time. Therefore, it is the data rate limiter of most
systems. The 2z, values can be calculated quickly using a SRC and
using the Chien search with a parallel format implementation. If
the ¢; SRC requires more processing time than a z, SRC implemented
in a sequential format, then a sequential z; SRC (rather than one
in a parallel format) might be used to save size, weight, and
power. The x, circuit can be simplified slightly by letting the
primitive element of used in the code word generator be af=a'. The
y; circuit should be designed to require less processing time than
the limiting process (which is often the o; circuit). The final
SRC 1s the C;' circuit which is nothing more than a time delayed
version of the received symbols R, shifted out after some of the R,
have been added to the y; at the Xy

The partitioning between the stages is illustrated in figure B.4-2.
For some of the stages, it is possible to start the process of
calculating its set of values when the previous stage has not yet
completely calculated all of its values. For example, it is
possible for the C,' circuit to start to output the decoded code

rm t 3 %229 1 4= 3 s €3 4=
word symbols C at the time when the most significant error

location %X, and the associated error value Yy, had been calculated
AND still maintained a continuous output. A correctly just-in-time
architecture should add to the degree of pipelined (or parallel)

nrococceinag
r a°

o T e A b

Besides the ©previous discussions of stage partitioning,

partitioning of the stages themselves are possible. Hypersystolic
array do:1nnq are exampnles of this Thecoe hqnprcv:f—rﬂ i array

LA Y Lo 9 - 1 EN ¥ S g ] Poa o S vwa e

de51gns partltlon the processing of each stage 1nto many cells (or
computational wunits) which add to the degree of parallel
processing; therefore, even higher data rates along with 1less
decoder delay results. See "Hypersystolic Reed-Solomon Decoder
Final Report" within the references section.

For a high data rate (real-time) system, a pipelined design that is
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globally synchronous may be preferred. For an ultra high data rate
(real-time) system, a design with even more parallel processing
that is globally asynchronous, but locally synchronous, e.g., the
hypersystolic designs, may be preferred. Low data rate systems
might be designed using a SRC, a general purpose processor, or by
running some high level (or low level) computer language program on
any available computer. High data rate systems usually demand some

. . .
type of parallel processing implemented directly into a SRC.
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APPENDIX C
MATRICES AND RS CODING

People sometimes prefer to work with matrices to reduce the
algebraic load. Using matrices can come in handy when developing
software and possibly hardware. I sometimes prefer matrices
because it's sometimes easier to see how the code is working.

C.1 RS ENCODING USING MATRICES

Start off with the generator matrix g. g is a k-by-n matrix Di-byon®
In RS coding it must be constructed directly from the generaéor

polynomial g(X) = X%+a'%%+a'x*+a*x3+e®x%+e%+a®. To simplify the
notation, let -0 = 0, 0 =1, 1 = ¢, 2 = a%, ..., n-1 = a™'.
Therefore, g(X) = [6 9°6 4 14 10 0]. Notice that since we are
working with matrices, I decided to use the mathematical convention
of writing in increasing order of magnitude, i.e.,
g(X) = [gy 9y - 9,.«x] and not g(X) = (Fnk Fnke1 oo+ Yol The

non-systematic generator matrix Fnon-sys, k-by-n — Inon-sys is obtained from

the generator g(X) = [6 9 6 4 14 10 0].

6 9 6 4 14 10 0 -0 =0 =0 =®0 =00 =0 =0 =—m

-® 6 9 6 4 14 10 0 -0 -0 =® =© - -0 -©

-0 -0 6 9 6 4 14 10 0 ~0 -® -0 -0 -0 -©

-0 -0 -0 6 9 6 4 14 10 0 -® -© =© -0 -©

Inon-sys = =0 =0 -0 -0 6 9 6 4 14 10 0 -© -0 -© -0
=0 -0 =0 -0 -0 6 9. 6 4 14 10 0 -© -0 -

—® =0 - -0 -0 -0 6 9 6 4 14 10 0 -0 -

-0 -0 =0 -0 -0 -0 -0 6 9 6 4 14 10 0 -

=0 =W =WV =0 -0 -0 -0 - 6 9 6 4 i4 10 O

The systematic generator matrix Teye is directly constructed from
the non-systematic generator matrix ron-sys PY standard matrix row
operations; one row multiplied by o' and then added to another row
and the result replacing the row added to. To acquire the
systematic form, we want a k-by-(n-k) Parity matrix Py .by-(n-ky JOined
with the k-by-k identity matrix I, i.e., Feys,k-by-k = [Pbbva” I 1.

In other words, transform the g into the Jeys Shown below.

non-sys
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6 9 6 4 14 10 0O =0 =0 =00 =W -0 =00 -0 =00
112 3 8 14 12 =0 (0 -~ =00 =00 =00 =00 =00 =0
31110 9 7 1 ~o0 -0 (0 -0 —00 —© =00 =00 -0
712 8 0 7 8 -0 -0 =00 () =0 =0 -0 -0 -0
eys = 14 12 5 0 9 4 -0 -0 -0 =0 (0 -0 -0 —0 -©
4 14 12 1 9 9 -0 -0 -0 -0 =0 () -0 =0 =0
7 6 4 14 11 4 -0 -0 =00 =0 =0 ~0 ( -0 -
213 0 3 4 10 -0 =0 =00 =~0 ~® =0 =0 ) -0
-0 -0 8 i 4 3 -0 =0 -0 =00 =00 -0 -0 =0
This is ?learly of the form Feys,k-by-k = [Preby-(n-ky Ix] where
Pk-by-(n-k) is:
6 9 6 4 14 10
112 3 8 14 12
31110 9 7 1
| 712 8 0 7 8
S 14 12 5 0 9 4
4 14 12 1 9 9
7 6 4 14 11 4
213 0 3 4 10
-0 -0 8 1 4 3

and where the identity matrix I, is:

0 ~0 ~0 =0 =0 =0 =0 =0 -0
-0 (0 =0 =0 =0 =0 = =0 =0
-0 =0 (0 =0 =00 ~0 ~0 =~ =0
Ik= -0 =00 =00 () =0 =0 =0 =0 =0
-0 =0 -0 «0 ( =00 ~0 = =0
~00 =00 =0 =0 =00 (0 =0 =0 =0
-0 =00 =00 =00 =00 =0 0 = -0
-0 =00 =00 =M =0 =00 =00 () =0
=0 =00 =00 =00 =0 =0 =m0 =0 (O

Performing matrix row operations within a finite field is the same
as we usually perform matrix row operations within a infinite
field. However, we use the addition and multiplication methods for
finite fields, not infinite fields. Let us work an example of
calculating the first two rows of the d.,. Presented previously. We
first start at the first row of Fnon-sys * éznoted Yron-sys, rowd * From the
previous Jhon-sys W€ Obtain the following:

Tooneeys,ro0 = L 6 9 6 414 10 0 -0 - -0 ~® ~® -0 -0 - ]
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Therefore, the coefficients of "“"rowO" are:

9non-sys,row0,0
(o] P
~non-sys, rowd, i

gnon-sys, row0,2
etc.

B )W o e )

gnon-sys,rouo,n-k-1 = gncm -s8ys,row0,5 = 10
g " =9 ne = 0

mam_onun marf)l s ~r
FUNTDY3, 1 URv,ii" R Ll % 1 aya,luwv,u
= =00

gnon sys,row0,7

gnor's- sys,row0,n-k+1
etc.

gnon-sys,rouo,n-1 = gnon-sys,rouo,u = -® ‘

Now the first row, denoted row0, is the same for both the

systematic and non-systematic generators because
— — 0 _ - o _

gmm -sys,row0,n-k gnon-sys,rouO,tS = a = 1 and gnon-sys,rouo,i = = 0 for

i = n-k+1, n-k+2, ey n-1 = 7,8,...,14. Therefore,

a .= qa == 6 9 6 4 14 10 Q0 =0 =00 =00 =00 =00 =0 —x =-m)

~sys, rowd “non-sys, rowd L : - 4°

To find the second row of g

denoted Jeys,routr W€ do standard
matrix row operations.

sys?’

gsys,rmd = gnon-sys,rouO,n-k-‘lgnon-sys,rouO + gnon-sys,rou1
10[ 6 9 6 4 14 10 0 - -© =© =0 =0 =0 =0 -0 ]

+ gnon-sys,rom
16 19 16 14 24 20 10 -® -0 -® ~® =~ =0 =0 =0 ]

[
+ gnon-sys, rowl

=[ 1 4 114 9 5 10 -® -® -® =® =© =0 -0 -0 ]
+

gnon-sys,rmﬂ
= [ 1 4 114 9 5 10 -® ~® =0 =© =0 -0 -0 -0 ]
+ [ -0 6 9 6 414 10 0 -® -0 =0 -0 =0 -0 =0 ]
= [ (1l4+-) (4+6) (1+9) (14+6) (9+4) (5+14) (10+10) (-x+0)
(-ot=w) (—o0+=w) (~0t-w) (~0+-@) (~+-w) (~+-@) (~+-m) ]
= [ (1) (12) (3) (8) (14) (12) (-w) (0) (-®) (-=) (-=)
(@) (=) (-©) (-®) ]
=[112381412—000—co—co-ao-oo-co—co-oo]

The result is the i'h row of 9,y denoted g, . ., when gwsrw‘nk” =0
and gsysmmJ = ~o for 3 = n-k,n-k+1,...,n-k+i-1 and .for
j = n-k+i+1,n-k+i+2,...,n-1. The result that we have Jjust
obtained, is the second row denoted Teys, rowt * This 1is because
gsysm” = o = 1 and g, w1,j = @° =0 for j = 6 and for
3 8,9,...,14. It should be noted that more and more iterations
of the previous procedure are needed to obtain Tiys, rowi for i
increasing.

il

The parity-check polynomial h(X) X"+1 / g(X) has a corresponding

'n:vr‘\i v-check natriy h( )-br h can be either cy:*l-mm-\{-w'n or
...... X D, yn*

non- syotcmatlc, but must be in accordance with its partner g; just
as h(X) is related to g(X), h must somehow also be related to g.
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ron-sys  Can be found from h(X) = [(hy by ... hlast_mple] in the'same

manner h t g can be found from g(X) = [9p 9y +-- gn] Once either

g or h is found the other is spe c1f%ed; Fe-by-k = [Propy-(n-ky Ik and
I

— T
h(n_k)_by_n = [T, P, by-(n-k) ] where Pk‘by_(n K 1S the transpose of Pk by_(n_k).

The message M can be encoded directly into the code word C using g

C. = M. d. . Use the (15,9) RS example to demonstrate
“i-by-n “*i-by-kZk-by-(n-k)° R Sl Al

this. From chapter 4, M = [-® 11 =0 =0 =0 =0 =0 -0 -x],

Csys = Mgsys = [=00 11 =00 —00 =0 =00 =00 =00 —co]gsys

Jeys = eystematic WaS previously calculated within this appendix. Once
this matrix calculation is completed, then C, vs is generated.

Ce = [12 8 14 4 10 8 -® 11 -0 =0 =® =0 =0 =0 -]

This result checks with the results obtained in chapter 4;
c(x) = a"x” + a®XP+a "%+ a3 +a X%+ aPx+a 2,

C.2 RS DECODING USING MATRICES

The syndrome s can be calculated directly from the received word R
using h'.

- T
srwr«rb - Rbbwéhqun«)
To find the errors and their values notice that
Ripyen = Cipyen + E p.n Where E is the error word. Now

s = Rh' = [C+E]h"T = Ch™+Eh'. It is a fact that s=Ch'=0 because h is
the parity-check of C. Therefore, s = Ch'+Eh' = Eh'. THEREFORE,
THE SYNDROME IS A FUNCTION ONLY OF THE ERROR PATTERN (OR WORD) AND
NOT THE RECEIVED WORD!

Wait a second, s=Rh'=Eh'; but this does not mean R=E. So, in our
calculations, we determine the value of the syndrome s by s=Rh' and
then find E with the fewest non-zero m-tuples such that s=Eh'.

This fewest number of errors idea should be familiar to us }JY now;

=2 —aa Va2 Saivwe A

it is MLD. The problem is to come up with an efficient algorithm
which determines this E. We could start with no errors (T=0) and
if s=RhL=0, then no errors occurred.

But what if one error symbol occurred? Then,
s=Rh'=[S., Sicper *++ Sicuniq] # O wWhere s, are the coefficients of
s(X). So we need to start calculating s=Eh' for each n? single,

non-zero error symbol possibilities of E until we get this
particular value of s. Notice the worst case condition is
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performlng the calculations for all the n? possibilities or storing
all n? possibilities in a table.

But what if two error symbols occurred? Then if q #0, the n? single
error symbol p0551b111t1es in s=Eh' would not equal s—RhT So then
we try all the (n*-n’)/2 possibilities approximately n* double,
non-zero error symbol possibilities. One and only one solution of
E exists with the fewest number of error symbols. If there is no
solution, then we need to keep calculating s=Eh' for more and more
errors (T<t) until a solution is reached. You can imagine the
number of calculations which are needed to be performed if we have
a lot of errors. That is why iterative algorithms are very
popular. The number of possible combinations of T, non-zero error

symbols is:
(D (F"-1)T = (nl/(T!(n-T) 1)) (P"-1)"

Even super computing usually cannot determine all of these possible
combinations to store into huge tables which are impractical.

- T 29
Continuously calculating s=Eh' for arbitrary error patterns until

a solution is obtained is also usually impractical. However, we
can check our results from the previous chapters. Let us calculate
s=Rh' which should equal s=Eh'; denote s=Rh' as sg=Rh" and s=Eh' as

se=Eh'. The received word from chapter 4 is R = [12 8 3 4 10 8 -»
11 0 -0 —-®© - -© -0 -],

sp = Rn'
= (12 8 3 4108 -0 11 0 -® -® ~® ~® -® -®]h'

. T - - T '
Let us flnd h . h bl hsys - [In*k Pk‘b‘y'(n'k) ]
0 -0 = =®© =0 -© 1 3 714 4 7 2 -»

6
-® 0 -0 -0 -0 -0 9 12 11 12 12 14 6 13 -
-® -0 ( -0 -0 -© 6 310 8 512 4 0 8
4
4
0

sys. -0 =0 =00 (Q =0 = 8 9 0 O 114 3 1 .
-0 =0 -0 -0 0 - 14 14 7 7 9 9 11 4 4
-0 -0 -0 -0 =0 0 10 12 1 8 4 9 4 10 3
And therefore, h' = h It should be noted that the minimum

distance d_;, is the smariest number of columns of h (or rows of h')

that sum to zero; this is a linear block code corollary and thus
also works for RS codes. Notice that in this example, d min = 2E+1
should be seven symbols. There are only n-k=6 rows of ht)s and
because of the identity matrix, no six or fewer unique rows add to
zero. Therefore, this only shows us that d., > 6 and it is; 4. =7.
This fact should serve as a good check for a valid h (and thus g).

Getting back to this example, h' = h_T.
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QO =00 =00 = =00 =00
-0 () =0 =0 -0 =0
—-00 =00 Q0 -0 -0 -0
-0 =00 =00 () =0 =m
00 =00 =00 =00 O -00
~00 ~0 =00 =0 =00 (

6 9 6 4 14 10

h' = 112 3 8 14 12

31110 9 7 1

712 8 0 7 8
1412 5 0 9 4

41412 1 9 9 ‘

7 6 4 14 11 4

213 0 3 4 10
-0 =0 8 1 4 3

So get-back to s,

s, = Rh' ’

[12 8 3 4 10 8 ~®"11 0 ~® =~© -0 -@ —© -o]h'
(31159 7 1]
[y 5y 8; 85 5, sq])

Therefore, s —a , s=a'!, s,=0%, s;=a%, s;=c7, and ss=a; s(X) = R(X) mod
g(X) = sZt 1X0Zt +...+s X+s,. Now let us check our error pattern
decoded 1in chapter 4. The error word from chapter 4 is
E=[-© -0 0 -© -© ~® -® -® 0 -0 ~0 -© -® -® -o]. Let us calculate
s = Eh' and make sure Sg=Sg.

= 1
SE - ?l:m _—n N &5 ,‘!’

= L= =% v

=[31159 71

Now does s, = 5, = [sy sy s, s 5, s5] = [3 11 59 7 1]? Yes, they
are both the same!!!
Great! Syndrome calculations can also be done using matrices;
sometimes matrices are easier to work with. But to be more sure of
having calculated the g and h matrices correctly, le*- us calculate
the syndrome components S; and verify them; S; = s(a ).

2t-1 i
s(X) =% sX

-t

=0

s(X) = 55 + 5,X + s,X2 + ... + Sy X2

= 5, + 5,X + s,X° + S;XP + 5,X% + 5.X°

= a® + a"x + &°x% + %3 + o’X* + oXx®
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S; = s(a) = 3+11°1+5°2+9°3+7°4 +1°5 = 0 Therefore, S,=a’=1.
S, = s(a®) = 3+11°245°4+9°6+7°8 +1°10 = 0 Therefore, S,=a’=1.
S; = s(a’) = 3+11°3+5°6+9°9+7°12+1°15 = 5 Therefore, S;=a’.
S, = s(a") =0 Therefore, S,=a’=1.
Sg = s(a’) = - Therefore, Sg=a""=0.
Sy = s(a®) = 10 ' Therefore, Sg=a'l,

These results agree with the ones in chapter 4. Also, the S; can
be represented as §5; = [Seecr Secret . oo Sorsrcr-117 e.qg.,

Sy =[S, 85,5;S,8S)]=1[11a:10a%=1([00650-o10].
Now decode the message!

Cw;

R+ E

=T12 8 3 410 8 -0 11 0 -® =0 =© =0 =0 =]

+[-m -0 () =0 -0 -0 -0 =0 ( -0 -0 ~0 =0 = ~00]
[12 8 (3+0) 4 10 8 11 (0+0) -® -® - -© = =]
[12 8 14 4 10 8 ~®© 11 - =-® =-© -© -® -0 -]

]
8

I

[CK1-by-(n-k) 'M1-by-k ' ]

C..' should equal C

sys

In fact, it does if T<t. Anyway, our

sys *

estimate of the message M! is extracted from
C' = (12 8 14 4 10 8 - 11 =-© =o =0 -0 -0 -© -©]. Fromchapter 4,
M = [0 11 -® -0 -© -©0 -® - -o] which agrees with the decoded
message M' = [~© 11 - -0 -0 -© -© -» -©]. Again from chapter 4,
CK = [12 8 14 4 10 8] which also agrees with the decoded
parity-check CK' = [12 8 14 4 10 8]. Therefore, we can do these

operations in matrix form if we desire to.
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APPENDIX D
A _GENERAL MATHEMATICAL OVERVIEW OF RS CODING

This appendix assumes some understanding of the terminology and
relates to primitive (n,k) RS codes over GF(2") in a non-erasure
system.

The general form of the code word generator g(X) is:
2t+FCR-1 _ .
g(x) =1 (X+(a®)")
R

The roots of the code word generator g(X) are consecutive powers of
any primitive element @f of GF(2") which can be different than the
primitive element a(X)=a used in generating the field with the
field generator F(X). ' The first consecutive root (FCR) is an
integer. A code word C(X) is comprised of a message word M(X)
annexed with a parity-check word CK(X). If the message word code
symbols M; (of the form a’) are unaltered and are appropriately
placed inside a C(X), then the C(X) is said to be systematic. To
be non-systematic, a code word is often of the form C(X) non-systematic =
M(X)g(X). To be systematic, a code word is often of the form
C(X) ystematic = X M(X) + CR(X) = (X"MM(X)) + (X""M(X)) mod g(X). Wwe
transmit or record code words.

We receive or play back received words. We know that a received

1 1 NIVY moane
word R(X) may not be a C(X), i.e., we know errors within R(X) are

possible. We need to determine which symbols, if any, within R(X)
are in error, i.e., we need to determine the error-locatlons x; of
the form X/ (or the error-location numbers z; of the form « iy, 'But
wait a minute. RS codes have code symbols from GF(q)=GF(P") not
GF(P): RS codes are g-ary BCH codes and are not P-ary [e.g., 2-ary
(or simply binary)] BCH codes. Therefore, we also need to
determine the error values y; of the form al. -

We know something about the coding system; we know g(X), m, n, and
R(X). We assume that the number of error symbols T is less than or
equal to the error correction capability t. The purpose of error
correction decoding is to find and correct the errors. Assume an
error—locator polynomial o(X) as a function of the error-location
numbers z;; o(X) is a function of the error-locations X; because the
X; are a functlon of the z; and the code word generator s primitive
element of. How do we get o(X) from R(X)? We know if af is the
code word generator's primitive element and that «® may not
necessarily be the special case of a®=a(X)=a, then we should denote
S; = R(a') = s(a') for a! = (af)’ = off, for i=FCR,FCR+1,...,2t+FCR-1,

—117- MEC-2

1834



and for s(X) = R(X) mod g(X) or s(X) from s = Rh'. If FCR just so

happens to be 1 and a® just so happens to be a'=a, then
¢ = nl(aly = araly for i=1,2 2% and the ¥. are a1mn1v the 7A but

[ X3 e AN\~ - E A Sl A pgée g e 0 0 L LAaiA —iie A Al A a

in the XSo™_Po%¢r form as opposed to the a’®™-P"¢" form. 1IN SUMMARY
THE FIRST DECODING STEP IS TO CALCULATE THE 2t SYNDROME COMPONENTS.

We also know that S, = R(a') = c(a') + E(a') = E(e'); the syndrome
components S; are a functlon of the error pattern. Therefore, the
next step 1n determining how o(X) is calculated from R(X) is to
link the syndrome components S, to the error-locator polynomial

o(X). s

Assume an error-location polynomial o(X) as a function of the
error-location numbers z, which are in turn a function of the
error-locations x;:

0(X) = (1+2,X) (1+2,X) ... (142,X) = 1 + o, X + ... + 0 X
Then the reciprocal ofza(X) is:

0.(X) = (X+2,) (X+2,) ... (X+2;) = X' + o X" + ... + 0, X + 0
Therefore: |

X'+ o X" 4+ L. 40X + 0 = (X+z,) (X42,) ... (X+2Zp)

Notice that o (X)=0 for X=2,,2,,...,2;.

We need yjzj' on the left side of the previous equation. Why or how
was yjzj‘ chosen? Well, we know Si=E(a') for i=FCR,FCR+1l,...,
2t+FCR-1 and for of being a primitive element of the GF(16). 1If
T £ t error symbols have occurred, we Kknow that the actual error
pattern E(X) is of the form E(X) = y1x1‘ + y,X2 + ...+ yxIT for j,,
K=1,2,...T. Therefore, 51nce S —E(a ) for 1—FCR FCR+1,...,2 t+FCR—1
we obtain S; = y,z,' + y,2,'+ ... Y Y.z, for i=FCR,FCR+1,...,2t+FCR-1.

Gy jK fethayra 3

MhhAa Ay~ =1nna4—4r\n nivmhhAares o A AEF A £ -~ [~

4ilc TLLUL " JAUVCALLULL ll\-ulchJ.D oi aLc UL il J.U.I.Au L - \« ) LW{A:J.!: J
is from E(X)]: if o just so happened to be a'=a, then z;, =
[where j, is from E(X)] and x; = XX [where j, is from E(X)].

S; = ¥4z, + ¥,2,'+ ... + y,;2;' for 1=FCR,FCR+1,...,2t+FCR~1 ARE KNOWN
AS THE WETGHTED POWER-SUM QVMMF"T’DT(‘ FUNCTIONS. Since the 8. are of

A2 ALdiu VA ANSii 4 didrs & Witddan D wia 2 AdiARAiAdNA W 4 VaSea dVavD @ 2ol LAl acalis L

the NON- LINEAR form y,z 1‘ + Yzzz ees + yTzT", we need the NON--LINEAR
form Y;Zj -

Getting back to finding the 1link between U(X) and the syndrome,
multlply the previous o(X) equation by y'z on both sides. The
result is the following equivalent equatlon.

y,zJ,‘(X" + cr,'XT’1 ‘oot 0, X 4+ 0p) = y}zj'((x+z1) (X+2,) .. (X+2,))
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Now substitute X=2z, into the previous equation and remember that
0, (X)=0 for X = 2,,2,,...,2;4, O Z;.

y;2;' (2" + o2, + o+ 042, 4+ 0p) =0 for j=1,2,...,T
Simplify the previous equatlon for j=1,2,...,T [because o (z ) O for
j=1,2,...,T] to result in:

{47 f+7-1 i+1 ie =
Y;2; + Y;2; o, + «oo + Y2, 0y + Y2, 0, = 0

Rearrange the terms of the previous NON-LINEAR equation to obtain
the following:

i i+ i+7-1 i+7T
Y20, + ¥z, 0,4+ .0t Y;Z; o, + Y;Z; =0

The previous equation is true for j=1,2,...,T-1, or T. Since all
of the 2t syndrome components S, was shown to be of the form
S, y1z1' + y,z,'+ ... 4 Y12 Ti for i= FCR FCR+1,...,2t+FCR-1, then the

following LINEAR equation for i=FCR,FCR+1, «+.,T+FCR-1 results:

So + S,

1 #1919 + ¢ +° S, 0, + 5,4,=20

i+7-171

The number of independent LINEAR equations for the previous
equation is T and the number of unknowns is also T; therefore, the
0; can be determined from the previous equation.

When T<t errors occur, we obtain additional equations used to solve
for fewer unknowns. This is because we have 2t syndrome components
(not 2T syndrome components) available. Usually the 1link is

expressed as: S;0;, + 5,404 + ... + 8,40, + S, = 0 for

i=FCR,FCR+1,...,2t-T+FCR-1. The 1link can also be synonymously
expressed as the following set of equations:

Sty t Sirai%rar Foeee St S 0

Secre19t *t Seere2frar F e F S0t Stpr T O

etc. ~
Saterercr-191 F SzeerercrOr-1 ¥ oo F Sapcr-2%1 t Sarercrer = 0

Sometimes the link is also expressed as §; = §,,0, + 5, .,,0,, + ...
+ S,,0, for i = T+FCR,T+FCR+1,...,2t+FCR-1.

S;0; + 8,40y 4+ ... + Sm 10y + S;,; = 0 for i=FCR,FCR+1,...,2t-T+FCR-1
IS THE LINK THAT WE ARE SEARCHING FOR; this 1links the known
S; = S;1S,,-+++S, to the unknown o(X) =1+ oX + ... + oX.

We know T<t, but we do not yet know the actual value of T; there

. .
\
may be many possible solutions of the previcus sget of LINEAR

eguations for T<t. Using maximum likelihood decoding, we will
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choose the value for T to be the least value out of its many

possible values; e.g., if T=t or T=t-1 would be able to solve.
Sigl + siHGT-i + ... + q|+T 1_1 + S. g = 0 for 1-—F’(‘Q FCR+1, ...,T+FCR-1
and T=1,2,...,t-2 would not be able to solve it, then we would

simply say that T=t-1 errors has occurred. IN SUMMARY, THE SECOND
DECODING STEP IS TO CALCULATE THE ERROR-LOCATOR POLYNOMIAL FROM THE
2t SYNDROME COMPONENTS.

The next step in the decoding process is to correct the errors in
the received word R(X). This final decoding step is performed by
calculating the error-locations-'x;, the error values y,, and finally
correcting any correctable error, if any, in R(X).

The inverse of the roots of o(X) [or simply the roots of o _(X)] are
the error-location numbers z;! The error-locations x; are related
to the-error-location numbers z; and are in the X/ form and not the
al form. x; = X~[(log,z;)/G], e. g., if GF(16), z1-a6, and a®=a?, then
X, = X~[(log,a®)/2] = XA(6/2) = XA (3) = X>. If af just so happened
to be a'=a, then x; = X*(log,z;), e.g., if GF(16) and z,=a’, then
X, = X"(loga) = X"(3) = X3,

After enough error-location numbers 2z, (also denoted as error-
location numbers z;) have been calculated, then we can start
calculating the error values y;, of the form «a’. We know
S;=54/S5,+++,5,, and we know 2i{=Zy, 2500002 and we know
S; = 2,¥, + 2,¥, + ... + 2, y for i=FCR,FCR+1,...,2t+FCR-1. Since
T < t, we have enough LINEAR equations to solve for the y,.

Therefore, since we found the x; and the y;, the decoded error E(X)'
is of the form:

=YX, f YK, to... +O¥XE
Therefore, the decoded code word C(X)' is:

C(XY'! = (¥Y = E(X\' = RIY)Y 4+ FIY)
Ny \éry A LY \I'\‘I

IN SUMMARY, THE THIRD AND FINAL DECODING STEP IS TO CORRECT THE
ERRORS IN THE RECEIVED WORD.




In summary, Reed-Solomon coding is
I. S; from R(X) or from s(X) [s(X) from R(X) and g(X)]
II. o; from S;
III. C(X)' from R(X) + E(X)' = R(X) + y1x1 + YoX, foee. oYX
a. x; from 2z, (z; from gy)

b. y; from S; and z;-
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