
Lyndon B. Johnson Space Center
Houston, Texas 77058

Technical Support Package

Tutorial on Reed-Solomon Error
CodingCorrection

NASA- Tech Briefs
MSC-21834

NationalAeronautics and

Space AdnTinistration

Technical Support Package

for

TUTORIAL ON REED-SOLOMON ERROR

MSC-21 834

,

NASA Tech Briefs

CORRECTION COIDING

The information in this Technical Support Package comprises the docunnentation
referenced in MSC-21 834 of NASA Tech Briefs. It is provided under the Technology
Transfer Program of the National Aeronautics and Space Administration to make
available the results of aerospace-related developments considered to have wider
technological, scientific, or commercial applications. Further assistance is available
from sources listed in NASA Tech Briefs on the page entitled “How You Can Benefit
From NASA’s Technology Utilization Services.”

Additional information regarding research and technology in this general area may be
found in Scientific and Technical Aerospace Reports (STAR), which is a
comprehensive abstracting and indexing journal covering worldwide repofl literature
on the science and technology of space and aeronautics. STAR is available to the
public on subscription from

Registration Services
NASA Center for AeroSpace Information
800 Elkridge Landing Road
Linthicum Heights, MD 21090-2934

Telephone: (301) 621-0390, Fax: (301) 621-0134, E-mail: help @sti.nasa.gov

NOTICE: This document was prepared under the sponsorship of the National Aeronautics and
Space Administration. Neither the United States Government nor any person acting on behalf of the
United States Government assumes any liability resulting from the use of the information contained
in this document or warrants that such use will be free from privately owned rights.

Chapter

ABSTRACT .

INTRODUCTION .

1

1.1

1.2

1.3

1.3.1

1.3.2

1.4

1.4.1 ‘

1.4.2 -

1.4.3

1.4.4

1.4.5

1.4.6

1.5

1.6

2

2,1

2.2

2.3

2.4

2.5

2.6

3

3.1

3.2

3.3

3.3.1

3.3.2

3.4

4

4.1

4.2

4.2.1

GALOIS FIELDALGEBRA .

GROUPS .

FIELDS .

1

2

8

8

9

BINARY FIELD GF(2)10

Bina~ Group’ ...10

Binary Field . 12

Extension FlELDsGF(2m) ...14

Primitive Polvnomialsp(x]. ...14

Field Symbols (xi ...17

Different Svmbol Representations. ...21

isomorphic GF(2m)lmplementations ...22

Addition and Subtraction Within GF(2m) .26

Multiplication and Division Within GF(2m) . 28

DIFFERENTALGEBRAICSTRUCTURES ...30

SUMMARY ...31

BLOCK CODES ...32

BLOCKERRORCORRECTIONCODINGSYSTEM ...3 2

APERFECT (3,1) BLOCKCODE. ...33

LINEARBLOCKCODES ...39

SOMEMORE REL4TEDTOPICS ...43

WHITE, BIACK, ANDGRAYZONES ...46

SUMMARY ...47

REED-SOLOMONENCODING ...48

REED-SOLOMONENCODER .-,48

(n,k)RS CODES5o
(15,9)RS PARAMETERS ..51

Generator Polynomial q(x).... ...53

Code Word Polynomial C(X).., ...54

SUMMARY .,.....56

REED-SOLOMONDECODING .,.....58

REED-SOLOMON DECODER ...59

SYNDROMES ...61

M@thodl :Svndrome Compone~ Si b. ,...........62

——
--i-- .\Isc’-2ls34

4,2.2

4.3

4.3.1

4.3.1.1

4.3.1.2

4.3.2

4.4

4.4.1

4.4.2

4.5

4.5.1 .

4.5.2

4.5.2.1 ‘

4.5.2.2 -

4.6

4.7

5

5.1

5.2

5.3

5.3.1

5.3.2

5.3.3

5.3.4

5.3.5

5.3.6

5.3.7

5.3.8

5.4

Method 2: Syndrome Polynomials(X) ..63

ERROR-LOCATOR POLYNOMIAL a(X). .63

Method l:lterative Algorithm Fora(X)64

Berlekamp’s Algorithm Presentation ...65

Euclidean Division Algorithm Presentation . 67

Method 2: Linear Recursion Method for a(X) .69

ERROR LOCATIONS \ o. .71

Method l: Chien Search71

Method 2: Explicit Factorization . ,73

ERROR VALUES ye.’... ..?3

Method I: Direct Solution ...73

Method 2: Error Evaluator Polynomials ...75

Greatest Common Divisor Polynomial ...75

Hardware Error Evaluator Polynomial ...76

DECODEDCODEWORDC(X)’ ...77

SUMMARY ...78

SYMBOLERASINGANDREED-SOLOMON CODING ...80

RSCODING USINGSYMBOLERASURE ...80

RSENCODINGUSINGSYMBOLERASURE .,.84 -

RSDECODINGUSINGSYMBOLERASURE ..85

Erasure Determination ...85

Syndrome Components Si ...86

Modified Syndrome Components S(’ ...86

Error-Locator Coefficients ai ...87

Error Locations xi ...88

Error Values ye ...88

Decoded Code WordC(X)’’ ...89

Determining. t~ina Svmbol Erasure System ...90

SUMMARY .-.92

.——
–ii-- ‘\isc-21s34

APPENDIX A: RSHARDWARE ENCODING DESIGN ..93

A.1 (15,9) RSSHIFT -REGISTE RENCODERCIRCUIT ...93

A.2 OTHER RSSHl~REGISTER ENCODER CIRCUITS. ...97

APPENDIX B: RSHARDWARE DECODING DESIGN ..99

B.1

B.2

B.3

B.3. I

B.3.2

B.4

BCHSHl~REGISTER SYNDROME CIRCUITS ...100

GENERAL HARDWARE CIRCUITS FOR Ui. aj=ak ...101

DIRECT METHOD HARDWARE FOR O(X) ...103

Previously Calculated Determinants ..103

Reduced o(X) Computations .~. ...105

HIGH DATA RATE RSDECODINGDESIGN ..105

APPENDIXC:MATRICESANDRSCODING ...110

C.1 - RSENCODINGUSINGMATRICES ...110

C.2 RSDECODINGUSINGMATRICES. ...113

APPENDIXD:AGENERAL MATHEMATICALOVERVIEWOF RECODING ..,..117

RE~RENCES ...122

ADDITIONALRECOMMENDEDREADING ...123

...
--Ill– llI:;c-?f:;3-l

TABLES

Table

1 .4.2-1

1 .4.3-1

1.4.4-1

1 .4.5-1

1.4.5-2

1 .5-1

2.2-1

3.1-1 “

3.2-1 -

3.3-1

4.1-1

4.3.1 .1-1

4.3.1 .1-2

5.1-1

5.3.1-1

Al-l

A.I-2

A.I-3

B-1

.,O$,oc, ,m# Page

GF(16) ELEMENTS WITH F(X)= X4+X+ I USING (X(X)=X19

EQUIVALENT ELEMENT REPRESENTATIONS”.....21

GF(16)ELEMENTS WITH F(X)=X4+ X + 1 USING CX(X)=X225

ADDITION/SUBTRACTION TABLE USED IN GF(24)27

GF(16)ADDlT10N/SUBTRACTIQNTABLEUSED ...28

RELATIONSHIPS BETWEEN ALGEBRAIC STRUCTURES . 31

DECODED WORDS AS AFUNCTiONOFERROR PA~ERN38

POLYNOMIAL DEFINITIONS OF ARSENCODER ...49

RSCODES OVER GF(2m)FORm <4.51

THE PRIMITIVE (1.5,9) RS CODE EXAMPLE PARAMETERS52

POLYNOMIAL DEFINITIONS OFARS DECODER61

BERLEKAMP’S ITERATIVE RS ALGORITHM FOR FCR = 1 65

EXAMPLE OF THE BERLEKAMP’S ITERATIVE ALGORITHM.67

RS SYMBOL ERASURE POLYNOMIAL DEFINITIONS c84

CODE WORD C(X) USED IN (15,9) RS ERASURE EXAMPLE86

(15,9) RSENCODER PROCEDURE ...93

FEEDBACK SHIHREGISTER STATES... ...95

OUTPUT SHIFT REGISTER STATES ...96

MEMORY TABLE OF A LOOK-UP-TABLE HARDWARE CIRCUIT99

—.—. . . . ____ ._ —-— -—
–i\, – :IISC-21::34

FIGURES

Figure

2.3-1

3.1-1

4.1-1

5.1-1

A.I-l

A.1-2

A.2-I

A.2-2

B-1

B. I-l

B. I-2

B.1-3

B.4-1

B.4-2

.O.OO ,.. .,O. Page

General Venn diagram of error correction codes ...40

Block diagram ofa Reed-SoIomon encoder ...49

Reed-Solomon decoder block diagram ...60

RS coding block diagram with erasure capability ...83

(15,9)RSencoder shift regi~ter circuit ...94

Blow upofthe output shift register . ,.. ...95

Encoder SRCusing CK(X)=M(X) mod g(X)98
,

Encoder SRCusing CK(X)=Xn-kh(X)M(X) mod (Xn+l)98

Combinational RS decoding circuit..99

Syndrome SRCusing s(X) =R(X) mod g(X)100

Another syndrome SRCusing s(X) =R(X)mod g(X)101

Syndrome SRCusing Si=R(ai)101

Lowdata rate RS single processor decoder............................106

HighdatarateRSpipelineddecoder.................................107

ABSTRACT

This tutorial attempts to provide a frank, step-by-step approach to
Reed-Solomon (RS) error correction coding. RS encodinc~ and
RS decoding both with and without erasing code symbols will be
emphasized. There is no need for this tutorial to present rigorous
proofs and extreme mathematical detail. Rather, this tutorial
presents the simple concepts of groups and fields, specifically
Galois fields, with a minimum of complexity. Before RS codc!sare
presented, other block codes are presented as a tecklnical
introduction into coding. A primitive (15,9) RS coding example is
then completely developed from start to finish demonstrating the
encoding and decoding processes both with and without the soft
decision capability. This example includes many, common algorithms
necessary to perform RS coding operations. A few other examples
are included to further.increase understanding. Appendices include
RS encoding and decoding hardware design considerations, matrix
encoding and decoding calculations, and a derivation of the famous
error-locator polynomial. The objective of this tutorial is to
present practical information about Reed-Solomon coding in a m,anner
such that people can easily understand it.

.———— — .— .——-,.—
-1- :,Isc-21:i3-#

INTRODUCTION

What is error correction? The general concept of error correction
is restricting the characteristics of source signals in such a
manner that sink signals can be processed to reduce noise effects.

What is error correction coding? Error correction coding attaches
redundancy, e.g., parity-check symbols, to the data at the systemts
error correction encoder and tises that redundancy to correct
erroneous data at the error correction decoder. In other words,
error correction coding is simply restricting the characteristics
of the output signals of the system’s encoder so that after the
signals have been sent to the system’s decoder, the decoder will
have a ‘very high confidence level of correctly extracting the
original source signal for the decoderrs corrupted input.

What is the purpose of error correction coding? The purpose of
error correction coding might be expressed in a multitude of ways
such as (1) increasing the reliability of data communications or
data storage over a noisy channel, (2) controlling errors so
reliable reproduction of data can be obtained, (3) increasing the
overall systemts signal-to-noise energy ratio (SNR), (4) reducing
noise effects within a system and/or (5) meeting the demand for
efficient, reliable, high perfo~ance, and economically practical
digital data transmission and storage systems. All of these
subjective terms can be defined for a particular application.

When we are learning a ltnewconcept“ or reviewing a concept that
was once understood, we are most often interested in simpli~city.
In an effort to minimize complexity, this tutorial presents simple
examples in

understanding
tutorial, you
coding.

clear detail without the need for extensive
of complicated mathematics. Once you finish this
will have a practical understanding of Reed-Solomon

Some of us are not aware that we all use error correction coding in
our daily personal lives. Do you remember times when you r~~ally
wanted someone to “get the message?!’ Suppose that you are pla:nning
a meeting. You are talking to someone and to be sure that this
person heard you indicate the time and place, you repeat the time
and place. In order to assure yourself that the person received
your exact message, you repeated the same exact message over again.
The repetition of the message is a form of error correction
encoding; you are adding redundancy to your message. Your i]ntent
~+7asto reduce the chance of your listener actually he,~ring
different words than what you were articulating.

Here is another example: You are listening to a soft spoken,
articulate speaker in a large auditorium filled with people. You
hear this person say, ‘J...Then we all sat up our fellahscopes and
viewed Clavius, the largest crater on the near side of our mc]onand
the site of the monolith....?’ I did not make a typo; you heard
tt...fellahscopes. ..1! Common sense tells us that this perscln said
“telescopes. “ How? Well, we performed a decoding operation on our
received message. Since there was noise in the room, we did not
clearly hear the articulately spoken word “telescopes,” lbut we
heard ‘lfellahscopes.ctThe first step in our common sense decoding
algorithm is flagging “fellahscdpes” as not being a valid word; our
language system has redundancy in the sense that there exists
invalid words which are never to be used. The second step is to
come up with a list of all suspected, valid words which are very
close to “fellahscopes.” Some solutions are microscope, telescope,
oscill~scope, radarscope, and horoscope. We then simply select the
closest valid word to “fellahscopes.” Since this is an auditory
example, “telescopes” sounds closest to ‘tfellahscopes.tt I.fthis
was a textual (or pat’tern example) , then “telescopes” would be
closest to l’telescopes.”

These everyday examples demonstrate what error correction coding is
and how it works. Adding error correction capability reduces the
chance of decoding some other message than the original message.
To add error correction capability, we append redundancy to the
message that we want to communicate, and then we transmit (or
record) it. Finally, we must be able to receive and decode it.

The Reed-Solomon (RS) codes have been finding widespread
applications ever since the 1977 Voyagerls deep space
communications system. At the time of Voyager*s launch, efficient
encoders existed, but accurate decoding methods were not even
available! The Jet Propulsion Laboratory (JPL) scientists and
engineers gambled that by the time Voyager II would reach Ura:nusin
1986, decoding algorithms and equipment would be both available and
perfected. They were correct! Voyager’s communications systlemwas
able to obtain a data rate of 21,600 bits per second from
2 billion miles away with a received signal energy 100 billion
times weaker than a common wrist watch battery!

I want a Dick Tracy audio/video, transmit/receive wristwatch! RS
codes have been an integral part of high performance, high
productivity, electronic device markets with annual sales expected
to top 17 billion American dollars by 1990. RS codes have clirect
application within many communications markets and nearly all the
data storage markets. Some of the more notable markets are the
following: In the optical compact disk (CD) markets there are
(1) compact disks for high fidelity audio data (i.e., CD players
and disks) , (2) compact disks for computer data (i.e., Cl)- read

–3-- r\fsc-21s3i

only memory (CD-ROM) drives and disks), (3) compact disks
interactive with a computer to display high fidelity audio, images,
and textual data (i.e., CD-I drives and probably disks),
(4) compact disks for high fidelity video (and audio) data (i.e.,
CD-V players and probably disks), (5) compact disks for data which
also have write capability for the user (i.e., WORM drive:~ and
probably disks where WORM represents write-once, read-many), and
(6) compact disks for data which also have multiple write and
erasure capabilities for the user (i.e., erasable optical disk
drives and probably disks). In the magnetic media markets there
are (1) magnetic tape with multiple write and erasure capabilities
for computer data storage and/or high fidelity audio (i.e.,,DAT
drives and tapes where DAT stands for digital audio tape) and
(2) magnetic disks with multiple write and erasure capabilities for
computer’ data (i.e., hard disk drives and maybe disks). In the
communications markets there are (1) communications over the
telephone systems with such applications as advanced facsimile
machines (which send and receive imaging data) and high :speed
modems (which usually send and receive computer data) ,
(2) satellite communications with such applications as the Hubble
Space Telescope, the Mobile Satellite Terminals, and the
300 megabits per second (Mbps) return link of the Space sti~ti.on
Freedom/Tracking and Data Relay Satellite System (SSF/TDRSS), and
(3) deep space communications with such applications as Voyager,
the Galileo Orbiter, the Mars Observer, and the Cassini ‘ritan
Orbiter/Saturn Probe.

Today, many error correction coding circuits exist and are eiasily

available in different RS coding architectures from different
sources. There are also many single chip codec (encoder / decoder)
circuits available with and/or without symbol erasure capability.
Some of the most powerful and talked about block codes available
today are the (255,255-2t) RS codes. There are even single chip
codecs available for many of these (255,255-2t) RS codes. An
example of a commercially available single integrated circuit codec
chip is the tSIO, n=255 configurations of the (n,n-2t) RS codes.
These particular single chip codecs can operate in excess ~>f 10
megasymbols per second or rather more than 80 Mhps! For many
applications, size, weight, and power considerations of high data
rate RS codes are quickly becoming insignificant. Due tc) the
availability, reliability, and performance of today’s Reed-Solomon
circuits, additional markets, like high definition television
(HDTV), should also start to open up.

People are even discovering new, practical uses of Galois fields
beyond the error correction (and/or detection), data compres:=ion,
digital modulation, and cryptography arenas. Some of these a:renas
are in controls and digital signal processing. For example, not
only are there binary and ternary discrete Fourier transforms

—.-———.—
--1-- \lsc-21s3i

(DFTs), but there are also P-ary DFTs where P is a prime number.
In today’s ever increasing complex and technological world,
sometimes the math does not fit into the physical system and
sometimes the physical system does not keep up with the math.
Sometimes there must be full duplex communications between the
coding engineers and the implementation engineers.

The Reed-Solomon error correction codes were introduced by Irving
S. Reed and Gustave Solomon in 1960. Their work was indepenc~entof
other similar works like the work by Bose, Chaudhurj., and
Hocquenghem (i.e., the BCH codes). Even though the RS codes are a
subgroup of the BCH codes, RS codes have pillaged and burned many
of its forbearers and peers in efficiency, practicality, and rates.
RS codes have generated many useful and widespread applications.
A lot of credit goes to Reed and Solomon.

This tutorial is organized with a conscious effort to present the
material in a clear, concise, and simple manner. A universal,error
correction coding notation semi-exists. I will try to keep the
notation as standard and as clear as possible. For a list of the
notation used, please refer to the notation section.

This tutorial is organized into five chapters. The material within
the chapters and even the chapters themselves are designed to allow
skimming if the person already knows the material. Considerable
effort has been expended to make each chapter self-contained :beside
the numerous cross-references linking the entire tutorial together.
I try to present the specific definitions as needed and locate them
near to the needs. In order to develop an understa:ndable
presentation, some specific definitions of terms appear much later
within the chapter than the first usage. However, all these design
considerations allow all the important details, along with its
prere~isite details, to be presented to a beginner in a l(~gical
(and condensed!) manner.

One of the best ways to demonstrate how something works_is to
perform ‘an example from start to finish. Throughout
chapters 3,4,5, and appendix C, a primitive (15,9) RS cod~zwith
some arbitrary inputs will be used as the main example. This
particular code was chosen because it has a code rate k/n greater
than one half and yet is still powerful enough and small enough to
de~onstrate. All the encoding and decoding stages will be
demonstrated. This demonstration includes working through some of

the different algorithms available at each stage obtaining
equivalent results. Also, the case of encoding and decoding using
symbol erasure (i.e., ~of~ decision) capability will be
demonstrated. This example starts out showing all the necessary
mathematical rigor, hut 2,s this example progresses and similar
operations are repeated, only the important results will be shown.

——.—— ——.——. -—...—————..
–~– ilIsc-21s34

Since all the essential mathematical rigor will be shown at least
once, the arithmetic that is not shown is left as exercises for the
reader.

In chapter 1 we will learn how to perform Galois field (GF)
arithmetic. In the past we have learned algebra (infinite field
manipulation) , calculus (summation using algebra in a different
application) , complex arithmetic (two dimensional algebra) , Bc)olean
algebra (manipulating binary elements according to rules similar to
algebra), and now finally we get to learn GF algebra (finite field
algebra using most of the standard elementary algebraic rules).
Within this chapter we will derive the GF(16) implementation needed
to work our (15,9) RS coding example.

In chapter 2 we will learn about the basics of block codes for
‘lcodingU applications. Within this chapter we introduce some
terminology, concepts, definitions, structure, and history of error
correction codes. For truly complete and absolutely accurate
material, we should refer to authoritative texts of which some are
in the reference and recommended reading sections. This chapter
should provide a general literacy of error correction coding.
Hopefully, it reads easily for the beginner and yet is pleasing
enough for the experienced person.

In chapter 3 we will learn how
we actually work the (15,9) RS

In chapter 4 we will learn how
we actually work the (15,9) RS

In chapter 5 we will learn how
have the symbol erasure capabi

to encode Reed-Solomon codes. Here
example for the encoding procless.

to decode Reed-Solomon codes. Here
example for the decoding process.

bo design the coding system when we
lity. Here we work this primitive

(15,9) RS example modified to show the power of erasing s~[~ls.

In appendix A we will learn how to encode RS codes using hardware.
State tables, equations, and worked out examples help us to
understand the encodervs shift register circuit.

In appendix B we will learn how to decode RS codes using hardware.
A general discussion of some of the shortcuts and design
considerations help us start thinking of how to design a pracl~ical
decoding system.

In appendix C we will learn how to perform the RS coding operal:ions
using matrices. Matrix calculations are probably more famili~~rto
us than finite field polynomial calculations. We can decode using
only matrices, but we still face the challenge of determining the
estimate of the error.

.— ..—
-6-.

——..—___ .—
:\I:;c-21s3.i

In appendix D we will learn how to derive the ever popular
error-locator polynomial o(X) . Here we should see why we often
work more with the reciprocal of o(X) [denoted as cJ~(X)]than CJ(X).

Some readers prefer details first and completed definitions second.
These readers may desire to read appendix D before they read the
chapters and the appendices. Appendix D is a very brief general
mathematical overview of RS coding.

I want to make Reed-Solomon coding easy to learn. I also want to
present enough detail so we may’become and stay fairly lite~;atein
Reed-Solomon coding. Hopefully this document has enough redundancy
in it such that people will receive a good understanding of
Reed-Solomon coding. For your information, this tutorial went
through’two review cycles. Therefore, maybe it is ~terrorfree! !~t
I have-seriously tried to reduce the number of errors in technical
content, but I am sure some still remain. If anyone would happen
to discover any noteworthy errors within this tutorial and would
let me know, I will be-appreciative.

After you have finished this tutorial, I hope you will feel that
this tutorial is helpful and useful to yourself and the peoplleyou
work with.

I wish to specifically thank the following people for their help in
developing this tutorial: Bill Lindsey who sened on the second
review cycle and gave me an interested, detailed, and technically
accurate critique; Phil Hopkins for his help in teaching :me the
finer points of error correction coding; and Rod Bown f[>r his
written and spoken comments which helped me to extensively rewrite
the first chapter.

DISCLAIMER: This tutorial is NOT a directive in any form.

CHAPTER 1
GALOIS FIELD ALGEBRA

Galois field (GF) algebra, sometimes referred to as ground field
(GF) algebra, is similar to high school algebra or arithmetic
except that GF algebra operates within a finite field. Take the
case of base ten, integer arithmetic. We can take the element
denoted 7, sum with the element denoted 8, and obtain the element
15. If we take some integer and either add, subtract, or multiply
it to another integer, we always result with some element in the
infinite set. However, in GF algebra it is possible to take the
element 7, sum with the element 8, and obtain the resulting element
only within a finite number of elements. In GF arithmetic the
result of this example is not 7,8, or O. The result of this
example may well be any one of the following elements: 1, 2, 3, 4,
5, 6, 9; A, B, C, D, apples, oranges the last element in
the field. You can not assign all {h~”~~~~lts of an operation,
given all the possible inputs, any way you desire. Algebraic laws
will develop the addition and multiplication tables for us.

To learn about Galois field algebra, we must first learn the
algebraic laws governing our Galois (or finite) field. These laws
are the standard algebraic laws. These laws may have, however,
become so familiar to us, that some of us may have even forglatten
them ! We got so into the habit of only being concerned with the
results that we forgot about the underlying algebraic laws which
govern the entire system; we just memorized our addition! and
multiplication tables. Let us first present the basic definitions,
theorems, and properties needed to understand GF arithmetic. Most
of sections 1.1 and 1.2 are rewritten from Error Control Coding:
Fundamentals and ADDlications by Shu Lin and Daniel J. Costello,
Jr. In section 1.3 we use the definitions previously presented in
sections 1.1 and 1.2 to derive the ground field GF(2). GF(2) is
the ground field of the extended Galois field GF(2”) that we use in
most block error correction codes. In section 1.4 we derive
GF(2”) = GF(24) = GF(16) from GF(2). This GF(16) is the field that
we are going to use for the (15,9) Reed-Solomon example. Some of
the mathematical structure of GF(2”) is examined. This strwzture
includes some different field element representations and some
different field implementations of GF(2~). This section also
includes examples of adding, subtracting, multiplying, and dividing
field elements. Then the final section presents all the under:l.ying
algebraic structure necessary to create GF(~). GF arithmetic is
the arithmetic of coding for the RS coding world.

1.1 GROUPS

Let G be a set of elements. A binary operation * on G is a rule
that assigns to each pair of elements A and B a uni~ely dej:ined
third element C = A*B in G. When such a binary operation * is

—— .. —.—..—.——_
—;{-. l\isc-21834

defined on G, we say that G is closed under *. Also, a binary
operation * on G is said to be associative if, for any A, B~ and c
in G: A*(B*C) = (A*B)*CO Definition 1 defines a group.

DEFINITION 1:
A set G (on which a binary operation is defined) is defined to be
a group if the following conditions are satisfied:

a.

b.

c.

,
A group G
satisfies

The binary operation * is associative.

G contains an identity element I such that, for any A in
G, A*I = I*A = A. ‘

For any element A in G, there exists an inverse element
At in G such that A*A? = AI*A = I.

is said to be commutative if its binary operation * also
the following condition:

A*B = B*A, for all A and B in G.

We should also make a note of the following two theorems derived
from definition 1: THEOREM 1 is that the identity element I in a
group G is unique. THEOREM 2 is that the inverse element A! of a
group element is unique.

This information should be all that we need to know about groups to
perfom GF arithmetic.

1.2 FIELDS

Roughly speaking, a field is a set of elements in which we can do
addition, subtraction, multiplication, and division without leaving
the set. Addition and multiplication must satisfy the commutative,
associative, and distributive laws. Definition 2 defines a field.

DEFINITION 2:
Let F be:a set of elements on which two binary operations-called
addition fl+fl and multiplication ft●11 are defined. The set F
together with the two binary operations ~I+t~and ‘~”ifis a field if
the following conditions are satisfied:

a. F is a commutative group under addition ‘I+ti. The
identity element with respect to addition I~& is called
the zero element or the additive identity 165dof F and is
denoted by O (zero).

b. The set of non-zero elements in F is a commutative group
under multiplication ~’““. The identity element: with
respect to multiplication In[~ is called the un~Lt (or
unity) element or the ncultip’ficativeidentity IN,~ of F
and ic c?enoted by 1 (one).

c. Multiplication ‘~”~tis distributive over addition ‘r+~t;
that is, for any three elements A,B, and C in F:
A“(B+C) = (A”B)+(A”C) .

It follows from definition 2 that a field consists of at least two
elements, the additive identity 18~4and the multiplicative identity
I Soon,Klult” we will show that a field of these two elements alone
does exist.

The number of elements in a field is called the order of the field.
A field with a finite number of elements is called a finite field.
In a field, the additive inverse <of an element A is denoted by -A,
and the multiplicative inverse of A (provided that A#O) is denoted
by A-l. Subtracting a field element B from another field element A
is defined as adding the additive inverse -B of B to A [i.e., A - B
is defined as A + (-B)]. If B is a non-zero element, dividing
A by B _is defined as multiplying A by the multiplicative
inVerse B-’of B (i.e., A / B is defined as A ● B-l= AB-1).

We should also make a .-noteof the following five properties of
definition 2: PROPERTY 1 is that for every element A in a field,
A*O= O“A= O. PROPERTY 2 is that for any two non-zero elements
A and B in a field, A*B # O. PROPERTY 3 is that A*B = O and A#O
implies B=O. PROPERTY 4 is that for any two elements A and B in a
field, -(A”B) = (-A)‘B = A-(-B) . PROPERTY 5 is that for A#O,
A*B = A“C implies B=C.

It is standard practice to either indicate multiplication by its
multiplication syrnbol f~*I~ or by writing the elements adjacent to
each other [i.e., A*B = (A)●(B) = (A)(B) = AB]. Throughout the
rest of this tutorial I will represent multiplication as muc:has
possible by the most common practice of adjacent elements.

We should now know enough about fields to develop one.

1.3 BINARY FIELD GF(2)

At this point, we should have learned enough about groups and
fields and reviewed enough of the basic algebraic laws to go z~head
and develop a finite field. To demonstrate the idea of finite
fields, we start off presenting the simplest case, ~odulo-z

arithmetic. We will first present the binary group over addition
and then over addition and multiplication.

1.3.1 Binarv GrouD

Consider the set of two integers, G={o,I}. Let us define a b!Lnary
operation, denoted as addition ‘I+rt,on G as follows:

..— —— —- .— .._____ .._ . — .—.._.
-1o- ~~i$;~-~lajl

Modulo-2 addition:

m

Notice that this can be implemented with a single EXCLUSIVE-OR
gate ! Anyway, this binary operation is called modulo-2 addition.
Let us prove that this is a group G:

Is G
YES.

Is G
YES.

closed?

PROOF : *
A+B = C,for all set elements A and B with the result C!
also being a set element.

, 0+0 ?=? () Yes, and C=O is also a set element.
0+1 ?=? 1 Yes, and C=l is also a set element.
1+0 ?=? 1 Yes, and C=l is also a set element.
1+1 ?=? o Yes, and C=O is also a set element.

associative? “

PROOF :
A+ (B+C) = (A+B)+C, for all A, B, and C.

0+(0+0) ?=? (0+())+0
0+(0+1) ?=? (0+())+1
0+(1+0) ?=? (0+1)+()
0+(1+1) ?=? (0+1)+1
1+(0+0) ?=? (1+0)+0
1+(0+1) ?=? (1+0)+1
1+(1+0) ?=? (1+1)+0
1+(1+1) ?=? (1+1)+1

Yes.
Yes.
Yes.
Yes.
Yes.
Yes.
Yes.
Yes.

Therefore, definition 1, part a has been verified.

Does G contain an additive identity element I~ti?
YES, Iati=O.

PROOF :
A+Ie~ = 18&+A = A, for all A.

0+0 ?=? 0+0 ?=? o Yes.
1+0 ?=? 0+1 ?=? 1 Yes.

Therefore, definition 1, part b has been verified.

Does G contain an additive inverse element At for ezch set
element A?
YES, the additive inverse element A? for each element A is t:heset
element A itself.

..— —.
-11-

-.
;\lsc.2[s34

PROOF :
A+A 1 = Afi+A= 18ti, for all A.

0+0 ?=? 0+0 ?=? o Yes.
1+1 ?=? 1+1 ?=? o Yes.

Therefore, definition 1, part c has been verified. Therefore, we
proved that this set {0,1) is a Group G={O,l) under rnodulo-z
addition.

Is G commutative?
YES. 9

PROOF :
A+B = B+A, for all A and B.

, 0+0 ?=? ()+0 Yes.
0+1 ?=? 1+() Yes.
1+0 ?=? ()+1 Yes.
1+1 ?=? 1+1 Yes.

Therefore, this group “G={O,l} is not only a group, but also a
commutative group under modulo-2 addition.

1.3.2 Binam Field

Now , since we have modulo-2 addition ll+ttdefined over a binary
group, let us develop a binary field. We need to define xnodulo-2
multiplication ‘I’tf.

Consider the same set of two integers, F={O,l}. Let us clefine
another binary operation, denoted as multiplication ‘I”tt,on F as
follows:

Modulo-2 multiplication:

m

Notice that this operation can be implemented with a single AND
gate ! Anyway, this binary operation is called Inociulo-2
multiplication. Let us prove that this set F={O,l} is a field
under modulo-2 addition and multiplication:

Is F a commutative group under addition?
YES, previously shown in F=G={O,l}.

Is the additive identity element Iatiof F called the zero element
denoted by O?
YES, previously shown in F’=G={O,l}.

Therefore, definition 2, part a has been verified.

———— —————. .-..__
l~

——

NJS(;-21834

Are the non-zero elements a commutative group under multiplication?
YES.

PROOF :
Let G = non-zero elements of F={O,l); let G={l).
Is G=(l) closed?
YES .

PROOF :
resultA*B = C, for all set elements A and B with the

C also being a set element.

element.1“1 ?=? 1 yes, and C=l is also a set

Is G={l) associative?
YES .

,

Does
YES,

PROOF :
A*(B”C) = (A”B)’C, for all

1“(1”1) ?=? (1°1)“1 Yes.

A, B, and C.

G=(1) contain a multiplicative identity

all A.

I?Iwit
I 1.mlt=
PROOF :
A“Imtt = ImttOA = A, for

1“1 ?=? 1“1 ?=? 1 Yes.

G=(1) contain an inverseDoes element
in the set?
YES, At=l.

PROOF :
A“A~ = A8-A = I~(t,

1*1 ?=? 1’1 ?=? 1

Is G={l} commutative?

allfor

Yes.

YES .
PROOF :
A*B = B*A,

1“1 ?=? 1*1

multiplicative

for all A and B.

Yes.

identity element theIs the Imlt ‘f called unit
element and denoted by 1?
YES, previously showr-in F=G={l).

Therefore, definition 2, part b has

So far we have shown that G={O,l}
modulo-2 addition AND G=(1} is

been verified.

is a commutative arouD under
a commutative g;oup’ under

multiplication. l~e have also shown that the additive identity
element IF

r
is denoted by o (zero) and that the multiplicative

identity e ement I~Jl~is denoted by 1 (one). To prove that F={O,l)
is a field, we now only have to prove that multiplication is
distrj.hutive aver mod~llo-2 addition.

—-—.. —.. ———.——— __
..]~- — NISC;-21S34

Is multiplication distributive over modulo-2 addition?
YES.

PROOF :
A“(B+C) = (A”B)+(A”C), for all A, B, and C.

0“(0+0) ?=? (0”0)+(0”0)
09(0+1) ?=? (0”0)+(0°1)
0“(1+0) ?=? (0”1)+(0”0)
0’(1+1) ?=? (0”1)+(0”1)
1“(0+0) ?=? (1”0)+(1”0)
1“(0+1) ?=? (1”0)+(1”1)
1“(1+0) ?=? (1”1)+(1”0)
1°(1+1) ?=? (1”1)+(1°1)

Yes.
Yes.
Yes.
Yes.
Yes.
Yes.
Yes.
Yes.

Therefore, definition 2, part c has been verified.
,

Therefo~e, since definition 2 was satisfied, the set {0,1) is a
field F={O,l) of two elements under modulo-2 addition and modl~lo-2
multiplication. Remember, a field F consists of at least two
elements: the additi,ve identity 1,~ and the multiplicative
identity l~l~. kThis modulo-2 field is t e minimum field of finite
number of elements that we talked about earlier. This modulo-2
field is usually called a binary or 2-ary field and it is denoted
by GF(2). The binary field GF(2) plays a crucial role in error
correction coding theory and is widely used in digital data
transmission and storage systems.

1.4 EXTENSION FIELDS GF(2m)

Since we now know the underlying algebraic structures to perform
GF(2) arithmetic, let us talk about extension fields. We are
interested in prime finite fields called Galois fields GF(P) . In
our previous binary operation example we had the minimum number of
possible elements which comprised GF(2). Extension fields are
GF(~) where m=2,3,4, ... With the design of error correfstion
coding based systems, we are interested in binary operations.
Therefore, we will mainly speak of binary Galois fields GF(2J1and
the extended binary Galois fields GF(2m) from now on.

1.4.1 Primitive Polynomials R(X)

Polynomials over the binary field GF(2) are any polynomials with
binary coefficients; they are binary polynomials. Each of these
polynomials, denoted as f(X), is simply the product of its
irreducible factors, i.e. , f(x) = FACTO~*FACTORI’ ...“FACTORl~,~.We
can create an extension field by creating a primitive polynomial
p(x) . A primitive polynomial p(X) is defined to be an irreducible
binary polynomial of degree m which divides Xn+l for n = Pm-l = 2m-I
and which does not divide Xi+l for i<n. Once a primitive
polynomial p(X) is found, then the elements of the Galai.sfield can

be generated. Any primitive polynomial p(X) can construct the P“=2m
unique elements including a O (zero or null) element and a 1 (one
or unity) element. A degree m polynomial f(X) over GF(2) is
defined to be irreducible over GF(2) if f(X) is not divisible by
any polynomial over GF(2) of degree greater than zero, but less
than m. Let us now test to see if the following binary polynomial
f(X) is a primitive polynomial p(X). We must show that it ‘isboth
an irreducible polynomial and also divides Xn+l appropriately.

First, let us test to see if f(X) = fi+X+l is irreducible.

f(o) = 04+0+1
= (0”0”0”0)+(0+1) = ;0”0) “(0°0)+(1) . .
= (o)“(0)+1 = (0)+1
= 1

. #o

Therefore, (X+O)=(X-0) is not a

f(1) = 14+1+1
= (1=1”1”1)+(1+1)
= (1”1) “(1”1)+(())
= (1)0(1) - -
= 1

#o

Therefore, (X+1)=(X-1) is

Since a factor of deqree

not a

factor (O is not

factor (1 is not

one does not exist for
f(X), then factors o-f degree three also
This fact is shown as follows:

f(x) = X4+X+1 # (X3+. ..) (x+. ..)

(Xf. . .) is of deqree one and is not a

do not

factor.
(X3+...) is irred~cible, then it is not Possible
degree three to be a factor.

a root) .

a root).

this degree four
exist for f(X).

Therefore, if
for (X3+...) of

Next, we should try to find a factor of degree two.
.

X2 = X*X
= X“x+ox+o
= X“x+(o+o)x+(o”o)
= (X+o)(X+o)
= (X+O)2

Thereforet X2 is not a factor because

X2+1 = X*X+1
= X“x+ox+l
= X“x+(l+l)x+(l”l)
= (X+l)(X+l)
== (X+1)2

(X+O) is not a factor.

._]j– ——_
Alsc-21s3-f

Therefore, (X2+1) is not a factor because (X+l) is not a factor.

X2+X = X*X+X
= X“x+lx+o
= X“x+(o+l)x+(o”l)
= (X+o) (X+l)

Therefore, (X2+X) is not a factor because (X+O) and (X+l) are not
factors. !

Now we need to determine if X2+X+1 is a factor of f(X) = X4+X+1.
6

IS X2+X+1 a factor of f(x) = x4+x+1?

1
X2 + x + XL+X+l

x<’+ x + 1 I X4 +X+l
X4 + X3 + X2

X3 + X2 + x
X3 + X2 + x

1

Remember in GF(2) arithmetic, the additive identity of an element
is that element itself. Therefore, subtraction in GF(2) is
e~ivalent to addition in GF(2)!! From the above example,
(X4) - (X4+X3+X2)= (X4) + (fi+X3+X2)= ~+X4+X3+X2 = X3+X2;then bring
down the X to fom X3+X2+X and so on like we usually do division.
Most handheld calculators will not help you here!

Since there is a non-zero remainder, X2+X+1 is not a factor of
f(x) ● Since there are no other possible second degree factors to
check, there are no second degree factors which divide f(x).

Since no factors of degree less than f(x) could be found for this
binary polynomial f(X), f(X) = X4+X+1 Is IRREDUCIBLE.

Since we have shown that f(X) is irreducible, we must now show that
f(x) = y+X+l divides Xn+l = Xls+l where n = P“-1 = 2“-1 = 15 and
that f(X) does not divide Xi+l for icn. This proof will show that
this irreducible polynomial f(X) is a primitive polynomial ~p(X).
So let’s run through a few iterations. Let us start with X1-+lof
order higher than f(X).

The
not

. .
X2+X+1

x+~
f(x)= fi+x+J. I x’+ +1

X5 + X2+X
X2+X+1

remainder of this division is not zero and therefore f(X) does
divide into X5+1. So let us try the next higher value fc)ri.

X3+X2+1
x* +

f(x) = X4+X+1 I x’+ ‘+X+l +1X6 +X3+X2
X3 + X2 +1

Again the remainder of the division is not zero and therefore f(x)
does not divide Xb+l. In a like manner f(X) does not divide X1+l
for the remaining values of i (i=7,8,9,....l4) until i = n =15=
2m-1● Letls show the results of this division.

X11+X8+X7+X5+X3+X2+X+1
f(x) = X’+x+l I X1’ +1.-

0
,

Notice-there is a zero remainder; f(X) = X4+X+1 does divide Xn+l.
Therefore, since we have shown that this irreducible f(X) clivides
Xn+l and not X1+l for i<n, THIS IRREDUCIBLE, BINARY POLYNOMIAL f(X)
IS ALSO PRIMITIVE; p(X)=XL+X+l.

1.4.2 Field Symbols Qi

Since we have a primitive polynomial p(X)=fi+X+l of degree m=4, we
can now generate our Galois field GF(~) = GF(2m) = GF(24) = GF(16)
from our field generator polynomial F(X)=X4+X+1; F(X) can simply be
any primitive polynomial p(X) of degree m. Since we want to
generate the GF(24)=GF(16), we need any fourth order p(X).

To construct the field, let us take our field generator polynomial
F(X) and perform a recursive process.

Let me first refer back to GF(2). Notice that if we add the unity
symbol 1 to the highest symbol in GF(2), which just so happens to
be 1 also, we get the lowest symbol O. It is recursive in the
sense that it wrapped around, started back over from its highest
symbol to its lowest s~ol:

.
00= The lowest element.

0+1 ==1 Add the unity element to the lowest element and the
result is the element 1.

1+1 = o Add the unity element to the previous result and we
are back to the lowest element.

Now let~s use this interesting fact along with a newly introduced
element, alpha a=al. ai (read as alpha-to-the-i) will denote each
individual element within our GF(16) . So in order to develop our
field (or alphabet), set “the primitive element a X)”,

\
often

denoted simply 3s FlaFl e~ivalent to oxm-’ + Oxm- +
lx + o = x.

+
liewill co;plete a recursive multiplication p~~~ess

similar to the previous GF(2) addition e>:ample. PJhatwe will do is
keep taking consectltive pcl~’ersof ~ttheprimitive element alpb-a”

—. —.—— —. —...
--17- :\rs(:-21s3.l

until the field elements

Because we are using the
elements of GF(~)=GF(2m)
null and unity elements
unity elements of GF(2)0

00 =

11 =

start to repeat.

extension of GF(P)=GF(2), the first P=2 “
are the same as GF(P)=GF(2); i.e., the
in GF(2m) are the same as the null and
Therefore, a-m = O = O and a“ = I = 1.

—> 00 =

—> 11 =

Now we set a(X) = a = X to obtain the 4-tuple j3X3+j2X2+j1X+j0for
each element (or symbol) al of GF(16):

a =x
a2

—>Q’=X
= a-a

Q3
= X*X = X2 —> a2 = X2

= a“a27= X*X2 = X3
a4

—> a3 = X3
=a*a3=X”X3=x4 =?? —> a4 = ??

What do we do now to change X4 into the appropriate m-tuple, i.e.,
the appropriate 4-tuple~ Well, we simply take the modulo function
of the result, e.g., a4 = a“a3 = x“x3 = x4 = x4 mod F(x). One of the
ways to perform this modulo function is to set our fourth degree
F(X) to zero and obtain the 4-tuple equivalent to X4. Working this
out we obtain

F(X) = fi+x+l = o
Y= -x-1 = (-x)+(-1) = (x)+(l) = X+l

Thereforer a4 = cz*a3 = X*X3 = # = # mod F(X) = X+l. It should be
noted that a-” = () = o mod F(x) = 0, ao = 1 = 1 mod F(x) = 1
cY1=a=X = X mod F(X = X, a2 = X2 = X2 mod F(X)
a3 1

= X2, ~n~
=X3= X3 mod F(X) = X. Let us continue this recursive Process

by doing a little algebra.

a4 = a“a3 = X.X3 = fi = # mod F(X) = X+l —>

as = a*a4 = X(x+l) = X2+X —>

a6 = a“as = x(x*+x) = X3+X2 —>
or
a6 = X2(X+1) = X3+X2= a2’a4

a7 = a“a6 = X(X3+X*) = Y+X3 = (X+1)+X3 —>
or
a7 = a2”a5 = x*(x*+x) = ti+x3
or
a7 = a3Sa4= X3(X+1) = #+x3

In the same manner the following are obtained:

a4 = X+l

as = X2+X

a6 = X3+X2

or -
a6 = X3+X2

a7 = X3+X+ 1

or
a7 = X3+X+1

or
a7 = X3+X+ 1

a8 = X2+1 all = X3+X2+X ~14= ~3+1
a9 = X3+X U12 = X3+X2+X+1
~lo = X2+X+1 a13 = X34-X2+1

-lr-
..—.—
711SC-21:;34

Notice that the recursive process repeats itself once we create
more than the 2m unique field elements. LetJs show this repetition
by examples.

~15 = a“a14 = X(X3+1) = X4+X = (X+l)+x = 1 ~15 = Uo = ~
U16 = a*a15 = X(1) = x

—>
U16 = al = x

~17 =a”a16 =X(X) =X2
—>
—> U17 = ~2 = X2

etc.

This is our finite field made up of 2m unique s~ols generated
from F(X) using the primitive symbol alpha a(X) = X1 = X. These
unique symbols are labeled as 0;lta,a2,an-’. It should be noted
that sometimes the O symbol is denoted by a-”, 1 by a“, and a by a’.
The remaining symbols (a2,(Y3,....a1)l) are always denoted the
standard way.

,
Table 2.4.2-1 summarizes the field representations so far.

TABLE 1.4.2-1.

GF(16)
elements

o
1
a
az
a3
Q4
a5
a6
a7

~13

U14

[~15=a0=l]
[a16==1=a]
[a17=Q2]
[etc.]

- GF(16) ELEMENTS WITH F(X)=X4+X+1 USING a(X)=X

Power Polynomial
representation representation

o
1

x
Xz
X3

X5
X6
X7
X8
X9
Xlo

[X15=XO=1]
[X16=X1=X]
[X17=X2 J
[etc.]

o
1

x
~z

X3

x+1
X2+X

X3+X2
X3 +X+l

X2 +1
X3 +x

X2+X+1
X3+X2+X
X3+X2+X+1
X3+X2 +1 ‘-
X3 +1

[1]
[xl
[

X2]

[etc.]

The modulo method that we are using to develop the field elements
al can be performed directly from a(X) mod F(X) =
(i X3+i2X2+ilX+iO)mod F(X).
t

The modulo function is a basic
ma hematical function; A mod B is simply calculated by dividing
A by D with the result being the remainder. The field generator

l(]
..—

Nrsc-21834

polynomial is still F(X) = XL+X+l.

00 = = O mod F(X) = O
1 =1 = 1 mod F(X) = 1
a
az : 7X)2 = X2 ::2::: :[;; ::2
a3 = (X)3 = X3 = X3 mod F(X) = X3
a4 = (X)4 = ~ = X4 mod F(X) = ??

Calculation of X4 mod F(X):
x+1

1 +’ F(X)
F[X) = X4+X+1 I X4

CY4=

X4+X+1

X+l
>

X+l
REM [1 + 1 =X+l

F(X)

Therefore,
.

a4 = (X)4 = X4 = X4 mod F(x) = X+l

In the same manner the following were calculated and verified:

a5 =~s= X5 mod F(x) = X2+X
a6 =#= X6 mod F(X) = X3+X2
a7 =X7= X7 mod F(X) = ;;:;+1
aa =#= X8 mod F(x) = X3+X
a9=X9= X9 mod ‘(x) : X2+X+1
Qlo= Xlo= Xlomod F(x)
all= Xll = X1lmod F(X) = X3+X2+X
a12 = X12 = X12mod F(X) = X3+X2+X+1
a13 = X13 = X13mod F(X) = X3+X2+1
Q14 = X14 = x14 mod F(X) = X3+1

als = ~

~16
‘x

etc.

Although the first procedure is easier, we can follow either of
these procedures to obtain the same 2m symbols in the extended
Galois field GF(2”) (see table 1.4.2-1). We should notice that if
we followed either procedure too long, i.e., solving for more than
2“ symbols, then We should find that als = a“ = 1, a16 = al = a,
=17= a2, Q(i+jn) =.em*f ~(({+jn) mod n) ~ ~i where j is an integer and
n=2~-1. In other words, continuing this procedure for more than
2m unique symbols will only result in repeating the polynomial
representation of the S@OISo

Thus f we finished developing the field of 2m uni~e s@o:Ls in
GF(2’3). THE FIELD GENERATOR F(X)=X4+X+1 AND THE PRIIvIITIVEELEIIENT
a(X)=X \’JIL~.BE USED THROLTGHOUTTHE REh~INING CHAPTERS.

—“—.—. -—.——

-;()- NISC-21S34

1.4.3 Different Symbol Representations

The Galois field elements (or symbols) can probably be represented
in hundreds of useful and effective ways. Usually the vector
representation is the cleanest and the easiest to perform additive
calculations on. The vectors are simply constructed with the null
character O representing the absence of the.Xj at a certain j=O,l,
2,...,l;l; i.e., the GF(2”) field elements al = j3X3+j2X2+j1X+-j0.The
unity character 1 represents the presence of the XJ. It does not
matter which direction you choose to write the vectors as long as
you are consistent. For example, suppose F(X)=X4+X+1 and a
primitive element X is given: Mathematicians usually prefer
writing as = X2+X3 = (0011) while application engineers usually
prefer a6 = X3+X2 = (1100). In this tutorial, I will always be
consistent in writing the representations the way I usually do it:
a6 = X3+X2 = (1100).

TABLE 1.4.3-1. - EQUIVALENT ELEMENT REPRESENTATIONS

GF(16)
smbols

o
1
a
Q2
a3
a4
a5
a6
a7
a8
a9
=10
all
~12

&13

*14

[Qls=ao=l]

[a16= a’=a]
[a17=a2]
[etc.]

Polynomial
representation

[

o
1

a
a2

a3
a+l

a2+a
a3+a2
a3 +a+l

a3 “+a+l
a2+a+l

a3+a2+a
a3+a2+a+l
a3+a2 +1
as +1

1]
[
[a2a ~
[etc.]

Vector
(or m-tuple)

representation_

(0000)
(0001)
(0010)
(0100)
(1000)
(0011)
(0110)
(1100)
(loll)
(0101)
(1010)
(0111)
(1110)
(1111)
(1101)
{1001)

[(0001)]
[(0010)]
[(01000]
[(etc.)]

So far I have presented three e~ivalent ways to represent a finite
field symbol. These ways are shown in table 1.4.3-1. Compare
table 1.4.2-1 with table 1.4.3-1. Since we chose the special case
of setting the primitive element CY(X)equivalent to X to generate
the fifn~d,we often will represent the field elements ai in terms

—..———. —. —.—._~l: - !\Isc-21s3-#

of the aj instead of the Xj. We will denote the elements CYias the
symbols of GF(2m). These are common practices and they help to
simplify some of the notation in the following chapters; compare
table 1.4.3-1 with table 1.4.2-1. Because there are so many
possible representations for the one and only one GF(2”) for each
m, many people prefer to simply denote the field elements as
symbols ● A dictionary can define a symbol as an arbitrary or
conventional sign used in writing or printing which relates to a
particular field to represent operations, quantities, elements,
relations, or qualities; in other words, symbols are a part of the
notation used to represent the elements within our GF(16).

s
Similarly, sometimes polynomials are written in row matrix form as
a shorthand form. For example, if p(X)=l+X+X4, then p(X)=[l;1001].
Again, I will remain with the notation such that
p(x) = X4+X+1 = [10011] ●

The exp~nent (or power) and vector (or m-tuple) representations are
the most popular. Multiplication by hand is easily performed using
the power representation and addition using the vector
representation. However, they are all equivalent representations.

The cyclic (shift register) nature of the elements in GF(2m) is
interesting. Notice that a5 is a4 with one left shift and a6 is
either a4 with two left shifts or as with one; e.g. , as = arithmetic
shift left of (0011) = (O11O). Since the most significant
binary-tuple of a6 = (1100) is a ‘Ilfl
a7 =

a7 is a4 plus aA shifted left;
‘6a4 + arithmetic shift left of a = (0011) + (1000) = (1011) ●

For details of how to work with shift register circuits (SRC),
please refer to a text or later refer to appendices A and B.

Most people say there is one and only one primitive element to
generate the one and only one GF(2”) for each m. They are correct;
there is one and only one a(X), but a(X) might be X, or X2, or X+l,
etc. TABLE 1.4.3-1 WILL BE USED THROUGHOUT THE FOLLOWING CHAPTERS
AS THE GF(16) NEEDED TO WORK OUR PRIMITIVE RS (15,9) EXAMP~.

The standard way of generating the field elements ai is by using
a(X) = a = X as demonstrated in this section. In chapter 3 we will
discuss RS encoding and we will need to be aware that “~)therf~
primitive elements exist other than a = a(X) = X. Section 1.4.4
demonstrates there are other primitive elements besides a(X)=X. It
also indicates that the field elements ai can be generated using
these other primitive elements which may be helpful in some
implementations. If one does not care to read the next section,
then note the comments of this paragraph and skip over to
section 1.4.5.

1.4.4 Isomorphic GF(2~) ~mplementations

There is one and only one GF(2). There is one and only one
GF’(24)=GF(16). In fzct, there is one and only one

finite field GF(2”) for each m. however ~ not only are there many
different representations for each finite field element (e.g.,
m-tuple representation or power representation) , but there are also “
many ways to implement the elements of GF(2”).

The earlier sections presented the most popular, most common, and
probably the easiest way of explaining the field generation. This
was done by setting the primitive element alpha CY(X)=CYto the
polynomial i$X3+izX2+i1X+i0= X; X is a primitive element of GF(16)
using F’(X)=X+X+l. By generating the field, i.e:, generating the
X2m unique symbols, the process assigned particular patterns of
lts and O1s (see the vector representation) to each of the GF(16)
symbols; the process generated one particular implementation of the
one and only GF(16). Now in this section, I want to communicate
that different implementations are often preferred when we try to
apply the field into physical systems and/or into computational
systems-.

All the possible primitive elements of the one and only one GF(16)
using F(X)=XL+X+l are X.,,X2, X+l, X3+X+1, X2+1, X3+X2+X, X3+X2+1, and
X3+1. When a primitive polynomial is used as the field generator,
primitive elements are the prime (or relatively prime) powers of
the primitive element CY(X)=X to one less than the size of the
field. In other words, refer to table 1.4.2-1 and notice that a3,
tZ5, Qb, ag, ale, and alz are nOt primitive elements because
3,5,6,9,1O, and 12 are not relatively
q-1 = 2“-1 = 15 = 3“5;

prime to
a(X)=Xr a(X)=X2, a(x)=x+l, a(x)=xs+x+l,

a(X)=X2+l, a(x)=xs+xz+x, Q(X)=X3+X2+1, and a(x)=xs+l ar<a all
~~im~~liveal~lementsbecause 2,4,7,8,11,13, and 14 (from a2, a4, a7,

and a14 of table 1.4.2-1) are relatively prime to
q-i =i5=; *5. It should be noted that all the non--zero,
non-unity elements of the GF(4), the GF(8), the GF(32), the
GF(128) , and some of the other higher degree GF(2”)‘s are primitive
elements because the (q-1)‘s are primitive, i.e., 3,7,31,127, etc.
are prime numbers.

Now, let me work an example of a GF(16) implementation different
than what is shown in table 1.4.2-1 (and table 1.4.3-1). For
learning purposes, let us use the same F(X) as used to generate our
field in table 1.4.2-1 but this time let us- use

i3X3+izX2+i1X+io= X2 instead of a(X)a(x) = i3X3+iX2+i1X+i0 = X.
All right, set a(x) = X2 and develop an imp~ementa~ion different
than when a(X) = xl = x.

Now we set a(X)=X2 to obtain the 4-tuple j3X3+j2X2+jlX+jO:

a = ~2

= X2 mod F(X)
= X2

. -.
ad =a”a=

= k mod
= X+l

a3 =a*a2=
=
=
=

a4 =a”a3=
=
=
=
=

(Y5=a”a:=
=
=
=
=

a6 =a”a5=
=
=
=
=

a7 =a”a6=
=
=
=
=

~L.xd

F(X)

X2 X+l)4(X +X2) mod F(X)
(X3 mod F(X)) + (X2mod F(x))
X3+X2

(X2 X3+X2)
(X +X4) mod F(X)
(X5 mod F(X)) + (X4mod F(x))
(X2+X) + (X+l)
X2+1

[
X2 X2+1)
(X +X2) mod F(X)
(X4 mod F(X)) + (X2mod F(x))
(X+l) + (X2)
X2+X+1

(X2 X2+X+1)
(X +X3+X2)mod F(X)
(X4 mod F(X)) + (X3mod F(X)) + (X2 mod F(x))
(X+l) + (X3) + (X2)
X3+X2+X+1

kX2 X3+X2+X+1)
(X +#+X3+X2) mod F (X)
X5 mod F(X) + X4 mod F(X) + X3 mod F(X) + X2 mod F(X)
(X2+X) + (X+l) + (X3) + (X2)
xx+1. ..-

We can start to get an intuitive feeling that even though there are
many implementations playing around with the structure of the
field, there is one and only one GF(2”) for each m. Completing the
procedure for the remaining elements, we get the following

..

remaining implementation: -

a8=X
a9 = X3
~lo= X2+X
all= X3+X+1
a12 = X3+X

a13 =
X3+X2+X

~14 == X3+X2+1
als = ~

These results are listed in table 1.4.4-1. Notice that the field
elements ai within table 1.4.4-1 have a different implementation
(or representation) than the field elements - CYi within
table 1.4.2-1. Even though there are many possible implementations
of GF(16), mathematically there is one and only one GF(16) . we
should notice that ~~hen we do NOT use a(X)=X as our primitive

element, we will not develop a table similar to table 1.4.3-1,
i.e., we will NOT develop al = j~-lam-l+ jm-2am-2+ + ~lCY+ j.
representations, but we can ““M”.1+develop ai = jm-lx 3m-2xm-2+
..* + jlX + j. representations.

TABLE 1.4.4-1. - GF(16) ELEMENTS WITH

GF(16)
symbols

o
11

a
a2
a3
a4
as
a6
a7
aa
a9
alo
all
a12

a13

a14
+

[a15=a0=l]
[a16=a1=a]
[a17=a2]
[etc.]

Hot cnly
isomorphic

Polynomial
representation

o
1

X2

x+1
X3+X2

X2 +1
X2+X+1

X3+X2+X+1
X3 +1

x
X3

X2+X
X3 +x+ 1
X3 +x

X3+X2+X

X3+X2 +1

[1]
[X2 1
[X+l]
[etc.]

F(X)=X4+X+1 USING CY(X)=X2

Vector
(or m-tuple)

representation

(0000)
(0001)
(0100)
(0011)
(1100)
(0101)
(0111)
(1111)
(1001)
(0010)
(1000)
(0110)
(loll)
(1010)
(1110)
(1101)

[(0001)]
[(0100)]
[(0011)J
[(etc.)]

..

do We have different primitive elements to cause
implementations, but we also have a minimum of two

primitive polynomials for any GF(2”), i.e., a primitive polynomial
p(X) and it’s reciprocal pr(X) where p,(X) = ~(X-l).

We keep talking about primitive polynomials, but did you know that
we do not even need to use a p(X) to generate the GF(2n)? For
example, we could generate the one and only GF(16) using the
irreducible, but non-primitive polynomial F(X) = X4+X3+X2+X+1and a
primitive element a(X) = X+1. However, one of the reasons we
usually use primitive polynomials is that a(X)=X will alwa~~sbe a
primitive element of any primitive polynomial p(X).

-——.— —-—.——-—.—.- —-_. .___, ____________ —c .—— ——-.-—_
~-’?. RISC-21$34

Some implementations consist of generating the field using one of
the previous implementations and then biasin9 the elementsl e“9”i
generate the field and then to obtain the implementation of how the
1’s and O’s are assigned to each element, set anewi = aJaO[di where
i= -~,o#l,2t .*.?2m-2 and j is an integer.

Besides all these implementations there are many more. We used a
polynomial base, i.e., consecutive powers of the primitive element.
There are other possible bases which are useful in computations
and/or physical system implementations.

s .
It should be noted that most people prefer to just say there are
many different representations for each unique GF(2m) for each m.
Simply try to use a standard representation which makes the most
sense to you, but remember your system implementation.

Overall, there is one and only one GF(2m) for each m. There are
many implementations for each GF(2m). Some implementations are
easier to understand, some are more useful in computational
implementations, while some are more useful in physical system
implementations.
IMPLEMENTATION OF

FROM THIS POINT ON, REFER ONLY TO THE MOST COMMON
GF(16) FOUND IN TABLE 1.4.3-1.

1.4.5 Addition and Subtraction Within GF(2m)

Addition in the extended Galois field GF(2m) can be performed by
one of two methods. The most common method is by exclusive-oring
the elementst vector representations position by position. This is
simply performing modulo-2 addition; we are not using carry
arithmetic. The least common method is by adding their polynomial
representations together. It is interesting to realize that these
two methods are equivalent! For example a8+a5= (a2+l)+(a2+a)=
a+l = Q4 is equivalent to CY8XOR (Y5= (0101) XOR (0110) =
(0011) = a~. Remember that subtraction and addition are equivalent
in GF(2m)‘arithmetic (i.e., a8+a5 = (a2+l)+(a2+a) = (a2+a2) +a+l =
(0)+a+l = a+l = a4 is equivalent to a8 XOR as = (0101) XOR (O:L1O)=
(<0 XOR 0><1 XOR
(0011) = a4).

Using the vector

1><0 XOR 1><1 XOR O>) = (<0+0><1+1><0+1><1-+-0>)=

addition method:

a4 = 0011
a8 = 0101

a4 XOR aa = 0110 = as

.——.—.—. —.
–20-

—-.
T\;$;c-21s.34

Using the polynomial addition method:

~4 + a8 = (a+l) + (a2+l)
= a+az
= as

~8 + ~4 = (a2+l) + (a+l)
az+a=

= as

Since subtraction is identical to addition:

cY4+ (Y8= a4 - a8 a8 + a4 = a8 - a4
= -ab + a8 = -a8 + a4
= -a4 - a8 * = -a8 - Q4

,

Therefore, a8 + as = as + a8= a4
a8 + a4 = a4 + a8= as
as + a4 = a4 + as = a8

TABLE 1.405-1. - ADDITION/SUBTRACTION TABLE USED IN GF(24)

o 1 a CY2 a3 Q4 a5 a6 a7 a8 a9 a10 all a12 ~ls *14
1 0 a4 aa a14 a a10 a13 a9 az a7 a5 a12 all a6 a3
a o a5 a9 1 ad all CY14 a~” a3 a8 a6 a13 a12 a7
ad o a6 a~” a a3 aqz 1 all a4 a9 a(a14 a13
a3 o a7 a“ az a4 a13 a a12 a5 alo a8 1
a4 o a8 a’2 a3 a5 a14 ad a13 a6 a~~ a9
a5 o a9 a’3 a4 a6 1 a3 a14 a7 a12
a6 o a’” a’4 a5 a7 a a4 1 a8
a7 o all 1 a6 a8 ad a5 a
a8 o a’2 a a7 ag a3 a6
a9 o a’3 aL a8 aqo a4
a’” o a’4 a3 a9 a~~
al’ o 1 a4 a~”
a’~ o a a5
a’3 I o az
a~k o

. .

To save time throughout the remainder of - this tutorial,
addition/subtraction tables have been developed. Since.al+aj = ai+ai,only half of the following tables have been filled in
an effort to be easier on the eye and thus speed the calculations.
I suggest that either table 1.4.5-1 or its more condensed version,
table 1.4.5-2, be copied and used as a bookmark. Table 1.4,,5-2is
condensed from table 1.4.5-2 by denoting O as -~, 1 as O, CKas 1,
a2 as 2, a14

● e-, as 14.

TABLE 1.4.5-2. - GF(16) ADDITION/SUBTRACTION TABLE USED

-m o 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 -m 4 8 14 1 10 13 9 2 7 5 12 11 6 3..
1 -m 5 9 0 2 11 14 10 3 8 6 13 12 7,-
2 -m 6 10 1 3 12 0 11 4 9 7 14 13
3 -a 7 11 2 4 13 1 12 5 10 8 0,-
4 -a) 8 12 3 5 14 2 13 6 11 9
5 -m 9 13 4 6 0 3 14 7 12
6 -~ 10 14 5 7 1 4 c) 8
7 -~ 11 0 6 8 2 5 1
8 s

-~ 12 1 7 9 3 6
9 -~ 13 2 8 10 4

10 -~ 14 3 9 11
11 -m o 4 10

‘ 12 -m 1 5
- 13 -m 2
14 -w

1.4.6 Multiplication and Division Within GF(2m)

As in the case of addition and subtraction in GF(2m), we also have
two methods to perform multiplication and division. The most
common method is by summing the Symbolss exponents modulo 2m-1 (or
modulo n) and the least common method is again the polynomial
method.

Using the exponent mod n multiplication method:

Again using the exponent mod n multiplication method:

Another method of performing the modulo function for multiplication
or division is to keep multiplying or dividing by a15, which is
unity, until we obtain a symbol within the finite field.

~5a14 = Q5+14

Q19=
~19fr)d15=

= Q19/a15
= a4

Using the exponent

a5/a2 = a5a-2

*5+(-Z)=

= a3

Using the exponent

mod n division

division

method:

a-i:mod method for an inverse symboln

a5/a’4 = a5a-’4
Q5+(-14)=

= a-9
a-9d 15=

= a6

aan again multiplythe divide by unity method:Dr

a5/a’4 = a5a”14

Q5+(.14)

a-9
Q-9mod15
Q-9Q15

a6

Qls ~-ls= Qo = 1=

multiplication method:

for

Using the polynomial

Q5Q2 (a2+a) a2
Q2Q2+Q1Q2

a(2+2)+a(l+2)

a4+a3
(a+l)+a3
a3+a+l
a7

Another example using multiplicationpolynomial method:

a5a14 = (a,2+a)(a3+l)
a2a3+a2+a’a3+a
a5+a2+a4+a

(a2+a)+a2+(a+l)+a
a+l
a4

—. _ .—.— ——.. .— - .———
-29– NIS(;-21:;34

Using the polynomial division method:

a5/a2 = ~5a-2

a5(a -Zmod15
)

U5U13

(a2+a)(a3+a2+l)
a2a3+a2a2+a2+a’a3+a’a2+a
a5+a4+a2+a4+a3+a
a5+a3+a2+a
(a2+a)+a3+a2+a
*3

Again using the polynomial

a5/a’4 = a5a-’4
a5(a -14mod 15

)
a5a
(a2+a) a
a2a+a’a’
a3+a2
a6

#

division method:

Multiplication is easily performed by adding the exponents modulo
n and noting that ai”a-m = (ai) (0) = O. A multiplication table is
left as an exercise.

1.5 DIFFERENT ALGEB~IC STRUCTURES

In Reed-Solomon coding we are only interested in Galois field
algebra. However, it is interesting to understand the overall
picture of structure. Table 1.5-1 summarizes the relationships of
all of the different algebraic structures constructed in order for
us to be able to construct the extension Galois field GF(2m).
Notice that a semigroup is a subset of a xnonoidwhich is a subset
of a group which is a subset of a communicative (or abelian)-group
and on and on up to a GaIois (or finite) field being a subset of an
extension field. Table 1.5-1 is edited froxnJPL publication 77-23,
“Review of Finite Fields: Applications to Discrete Fourier
Transforms and Reed-Solomon Codingft,by Wong, Truong, Benjauthirt,
llulhall,and Reed.

TABLE 1.5-1. - RELATIONSHIPS BETWEEN ALGEBRAIC STRUCTURES

A19ebr8fcstructure Properties

Sernigroup

Monoid

Group

Catative or
abelian group

Ring

.

C~taMve ring

tmtative ring
uith unity element

Field

Finite field or
Calols field

Extension field

associative

Also withanother ~peration, say mltiplication 11*11,closed and associative.
A(SO addition“+l!andmultiplfcation$1*I1arediStri~tiVeO

Note: A ring is acmtative group under addition ci+’land asemigroup under
multiplication II’*I.

Also

A[so
mull

●

with the unity element 1 (one) for with addition “+” and
plication It’ll

Note: A cmtative ring with unity element is a c-tative group under
addition “+” and a monoidder multiplication““”.

A(soevery non-zero element has amltiplicative inverse A‘1 andthat M-l =1,
where 1 is the identity (or unity) elementImLt for multiplication 11*11.

Note: A field is a c~tative group tier atiitim ‘t+!’and its non-zero
elements form a multiplicative group.

A[so with finite -r of ●lements

Also uith the only possib[e finite fields GF(Pm) whereof is the extension
fieldof GF(P), GF(P) is the finite fie[d(orGaloisfielderground fie[d),
P is prime, andm is an integer

1.6 SUMMARY

This chapter should have gone into enough detail to answer most if
not all “questions about Galois field algebra. It did present
enough material to be able to thoroughly proceed and work the
following (15,9) RS coding example. Hopefullyr this chapter
answered all the ~estions from those who are being introduced into
finite field algebra and coding for the first time. The ones who
are still interested in further study of coding mathematics would
be served by reading the coding bibles or referring to some other
authoritative text.

Now we should be ready to perform operations on block codes,
especially non-binary BCH, cyclic, and linear block codes known as
Reed-Solomon codes.

CHAPTER 2
BLOCK CODES

Before we talk Reed-Solomon (RS), it is best to first talk about
its great, great grandparents called block codes. In this chapter
we start with a general block error correction coding system with
few specifics. Then in section 2.2, we construct,a little perfect
(3,I.) block code introducing terminology, concepts, and some
definitions. We then proceed into the next section where some of
the codes are defined and some of the ancestry is presented. In
section 2.4 we combine a random error correcting code with a burst
error correcting code. Also, burst error correction improvement,
block code modification, and synchronization are briefly discussed.
Section 2.5 discusses the error correction and detection domains
using the analogy of zones.

,

2.1 BLOCK ERROR CORRECTION CODING SYSTEM

In general, coding is taking k symbols as input to an encoder
producing n output s~ols. These symbols are transmitted over a
channel and the result input into a decoder. The output of the
decoder is usually the decoded version of the original k symbols.
In general, n in respect to k can be >,=,<, and/or any function of
those. When n>k, we may have a system with some n-k additional
symbols ● An application of this can be to add parity-check, a form
of redundancy, to the original data for error correction and/or
detection applications. When n=k we may have a scrambling
application. When n<k, we may have a compression application. In
the RS world the word ‘fcoding~lmeans “coding for the application of
increased communication reliability through error correction
capability with n>k.”

We should’ also note that in coding we are not interested in the
“meaningfl of the message in the sense that we can do something
earth shattering with these data. Rather, we are interested in the
sense that we can replicate at the output of the decoder what was
input to the encoder. Some data in, some corresponding data out.
Some particular garbage in, some corresponding garbage out.

In general, a blocli error correction encoding system is simply a
mapping of elements in an ordered set (denoted as a k-tuple) into
a unique, ordered set with more elements (denoted as a n-tuple);
the encoding process annexes redundancy to the message. The idea
behind a block, error correction decoding system is simply a
napping of the received n-tuple into its nearest, valid n-tuple

.—. ————. —.
>~ TISC-21834

(which corresponds to a uni~e ~-tupl~); the d~~oding ~roc~s~

removes the redundancy to recover the original message. If the
received n-tuple is correctly mapped into the original, encoded
n-tuple, then the decoded k-tuple is guaranteed to be the original
k-tuple. The procedure is that (1) the k-tuple is mapped into the
n-tuple, (2) the n-tuple is transmitted (or recorded), (3) the
nt-tuple (which is the n-tuple added with the channel error induced
by some type of noise) is received (or played back), and (4) the
k-tuple is then hopefully decoded from the nt-tuple by a mapping
algorithm.

s

In the encoding process for a systematic code, the k-tuple is
mapped into the n-tuple by taking the k-tuplets symbols (synonymous
to elements) and usually appending additional symbols for the
purpose>of error correction and/or detection. For a cyclic code
the additional symbols which are appended to the k-tuple are
generated by taking the location shifted k-tuple modulo the
generator.

If the error correcting capability of the code is not exceeded,
then the decoder is guaranteed to correctly decode the nl-tuple
into the k-tuple. In other words, in a noisy communication channel
it is SOMETIMES possible to correct ALL the errors which occurred!
We can sometimes guarantee that the decoder?s output will be
EXACTLY what was transmitted (or recorded)!! If the error
correction capability is exceeded, then the decoder will usually do
one of two things; it will either detect that the error correction
capability was exceeded or it will decode into an incorrect set.
If the decoder decoded into an incorrect set, then a decoder error
results. If this decoder error cannot be detected, then it is an
undetectable decoder error. If the error correction capability was
sensed as exceeded, then the decoder might be designed to send an
automatic repeat rewest (ARQ) signal and/or pass the noisy
n-tuple, denoted n’-tuple, through the system. Also, if the code
is systematic, we can at least recover the noisy message, denoted
kt-tuple, from the nr-tuple. For many applications, passing the
nt-tuple “through the system is not desirable, e.g., possible
privacy concerns.

2.2 A PERFECT (3,1) BLOCK CODE

Let me explain a block coding system in another way. Let us use an
example. Assume that we want to transmit either an “on’cmessage or
an lloff~fmessage. This can be realized in transmitting a binary
symbol (or a digital bit; be aware that many people define “bitstJ
as a measurement unit of ~tinformatj.on~t). A binary symbol with a
“l.ftis used to indicate the l?ont~and a “Ottto indicate the ‘fofftt.

.——..—. —— ——
._~j.– hfsc’-2l834

We send either 1 or O out over our communication channel and
hopefully receive at our destination the same message that we had
sent. However, sometimes we don’t receive the same message that we
sent because channel noise and even other noise was able to
infiltrate our system and inject errors into our message. This is
where error correction coding might come in.

Error correction coding provides us control of these errors so we
as communication or as data storage engineers can obtain llreliable
transmission (or storage) of data.” Claude Shannon in 1948
demonstrated that not only by ‘tp~operl~modulation and demodulation
of information, but also by ‘lproper~lencoding and decoding of
information, any arbitrary high, but non-unity, probability of
decoding the received block of data (the units are symbols) into
our original information (the units are bits) can theoretically be
realizea. The real problem is to approach Shannonts limit by
designing algorithms and then applying these algorithms and theory
into practical systems.,

.

We dontt get something for nothing. We must either decrease our
information rate and/or decrease the energy associated per
transmitted s~ol and/or increase our power and/or increase our
bandwidth. Often such considerations as antenna power, bandwidth,
and the modulation technique used are already cast into concrete.
So the communication system with error correction capability is
often designed at the expense of reducing our information rate and
adding a little power to operate the additional hardware. However,
often this power is negligible compared to other alternatives such
as increasing the antenna power. Also, notice that coding does
require a serial insertion into the communications channel and thus
will add to the propagation delay. However, this delay is usually
negligible compared to the other propagation delays in the system.
And then there are the size and weight requirements that need to be
addressed.

Wait one moment. Instead of keeping the symbol rate constant and
decreasing the information rate, we can increase the symbol rate
and keep the information rate constant. When I generally think of
communications systems, I usually think of them as a function of
only two parameters: signal-to-noise ratio and bandwidth. If we
compare an uncoded system with a coded system for the same
information rate (i.e., bits per second), the coded system will
have a higher symbol rate at the output of the encoder (i.e.,
s@ols per second) than the uncoded system. In other words, the
coded system spreads its signal energy over more transmitted
symbols within the same bandwidth. The energy associated with each
coded symbol is less than the uncoded symbol. Therefore, the
symbol error rate of a coded system will be greater than an uncoded
system. If the decoding of an error correction code has a better

..——.. ———-— ______
--? l-- 3jS(~-21XS.$

performance than an uncoded system (i.e., the coded system having
redundancy overcomes the higher s@ol error rate better than the
uncoded system with its lower symbol error rate without having
redundancy) at fairly high-to-low bit error rate regions, then we
obtain a coding gain in signal-to-noise energy. If the resultant
code has a worse performance, then it is a bad error correction
code. An error correction coding system will have worse
performance at very high bit error rates than an uncoded system.
However, in an error correction system we can fairly easily adjust
the coding gain to whatever we need for the operating regions.

1

In summary, error correction coding may not require any additional
antenna power or bandwidth; a coding gain can be obtained over the
same bandwidth by either decreasing the information rate or by
modulation techniques (which are usually more complicated and are
designed to spread the available signal energy over more symbols).
Error correction coding can even cause the overall power and
bandwidth considerations to be relaxed.

Referring back to our case of the ~Ion~~and ‘toffl~messages, let us

now add redundancy to the message. (Sometimes the messages are
called the data field or the information field. Be aware that
different people mean different things when they talk about
“information;” I will refer to the messages as either messages or
as data fields.) Instead of transmitting a 1 to indicate ~?onttand
a O to indicate ‘foff,”let us use more than this minimum of one
binary symbol to represent these two messages. Let us now say that
we want to use three binary symbols to represent these same two
messages; we are adding redundancy. There are eight possible
states, but we are only going to transmit two of them.

Let us develop this simple block code as an example to demonstrate
coding. Let us randomly pick say a three symbol sequence of binary
code s~ols to represent ‘ron.” Let us choose [101] for Iron.St
Usually to construct the most efficient code, choose the
representation for ‘loff~tto be as different as possible from_[lOl].
Let us then represent “off” as [010]; [010] is the code word for
IfOff.?1 A code word pertaining to a block code is defined to have
a block length of n symbols representing (or corresponding) to the
message length of k s~ols where each unique code word is uni~e
to each message. In this example, the code word [101] has a block
length n=3 s~ols, a message length k=l symbol, and the one and
only [101] is unique to ‘ion.l~The number of Its in any binary word
is its weight w. The number of positions which are different
between two words of the same length is its distance d. In this
example the weight w of the word [101] is two and the weight w of
the word [010] is one; w[101]=2 and wIOIO]=l. Also, the distance
d between the words [101] and [010] is three; d[101,010]=3. l{otice
thzt they differ in three locations. Also, notice that

d[lOl,OIO] = w[101+O1O] because of modulo-2 addition. In this
example d[lOl,OIO] just so happened to equal w[101] + w[O1O];
generally d[xxx,yyy] # W[XXX] + w[yyy]. The minimum distance d~i~
is defined to be the distance between the two closest code words.
Since we only have two code words in this example,
d = d[lol,olo] = d[OIO,lOl] = 3. By representing a message withmin
more binary symbols than is necessary to label all of the messages,
we are adding redundancy to the message. [101] and [010] are code
words that label our messages “on’tand “offltrespectfully. Now
notice that all of the other possible words, denoted as non-code
words, are invalid in that they will NEVER (never say never) be
transmitted; [000], [001], [011], [100], [110], and [111] are
denoted as non-code words. However, in a noisy channel it is
likely to receive these invalid words. This is due to the noise
corrupting our original code word representing our message.

Now let us try to decode the received word in the presence of
noise. If we receive .a [101] we will assume that we transmitted
tlon.11 If we receive a [010] we will assume that we transmitted
lIoff*?1 If we receive anything else we will pick the closest match
to either [101] or [010]. There, that is our decoding algorithm;
that is maximum likelihood decoding (MLD). A maximum likelihood
decoder (MLD) is defined as a decoder whose code word estimate is
detemined by maximizing the conditional received word probability
given that a code word has been transmitted. It also assumes
additive white Gaussian noise (AWGN) and a memoryless channel. A
MLD simply decodes the received word into its closest code word
measured by its symbol distance d.

But who is to say that errors cannot change one transmitted code
word into being closer to a different code word, or even being that
different code word itself? Actually errors can, but the
probability of it doing so can be made extremely small in
comparison. The idea of receiving a non-code word which is nearest
a single code word and then proceeding to decode it to be the
message represented by that code word, is called MLD.

If we receive [101] we decode it into c~c?n~tand if [010] then ‘loff.Ci
Seems like a given, does it not!? It seems as if no noise was
injected into our code word. Maybe noise was injected and maybe
not; there is no way that the decoder can absolutely know. For
example: what happens if we want to communicate ‘rontfover our
communication channel? Well, we transmit [101]. But now let~s say
that noise infiltrated our system and our receiver received [O1O];
an error in each location just happened to occur. The decoder
takes the [010] and says that it is identical to the representation
for f’off.ffIt then proceeds to incorrectly decode the [010] into
the message ~$off”and pushes it down the line; our decoder seems
happy. An undetectable error has just occurred; it is called an

.—.
.-jo–– -

-— — .——_
TISC-21834

undetected decoding or decoder error. The reason why we still go
ahead and use this MLD idea is that the probability of having three
errors in our received code word is much less than having two
errors, is very much less than having one error, and is very, very
much less than having no errors. Equivalently, the probability of
having no errors in our received code word is much more than having
one error, is very much more than having two errors, is very, very
much more than having three errors, and so forth. Since our
decoder only has the word it received through our noisy coding
channel at its disposal, it can figure out all the possible
combination of errors to get it to any of the code words. Using
MLD the decoder selects the combination of errors which has the
fewest number of errors necessary to get it to the nearest code
word. This pattern of errors is the MOST PROBABLE ERROR PATTERN,
but MLD’ does NOT guarantee it to be the ACTUAL ERROR PATTERN.
Since Co one has come up with a better idea to determine the
estimate of the noise and that MLD can be proven to be optimum in
an AWGN channel, MLD is still the best method to follow. MLD can
give excellent resultsl

Table 2.2-1 is given to demonstrate why this simple block code
example can correct one error symbol or fewer in its block length
of three and no others. Notice that more than one error s@ol
within a received word results in an improperly decoded code word.
This is because all the possible received patterns (or words) have
already been mapped into their correct code words using the MLD
principle. Since the probability of having less errors is much
greater than having more errors, the received patterns that have
the least number of errors are mapped first. We then map any
remaining patterns that have more errors until we run out of
possible received patterns to map. For our example, there are no
remaining received patterns that correspond to more than a single
error symbol.

Also notice that in table 2.2-1 ALL received words with more than
one error, symbol are replicated in the received words with less
than or equal to one error symbol. Since ALL single or fewer error
symbols can be mapped correctly into its nearest code word and
since NOT ALL (in fact NONE in this example) double error symbols
can be mapped correctly into its nearest code word, this particular
code is a single error correction (t=l) code. Since this code
makes undetectable decoding errors for all error symbols greater
than t symbols, this code is perfect. Therets nothing all that
great about a perfect code. In fact, a perfect code utilizing all
of its error correction capability is not necessarily a good code
in terms of communication efficiency. All the syndromes are used
for error correction capability and thus none are reserved for
error detection capability; perfect codes have no error detection
capability unless some error correction capability is forfeited.

A code with minimum distance d~i~ can be used as a t error
correcting, t~ additional error detecting code if and only if
2t+t~+l = d~in. If we use all the error correction capability of
this small example, i.e., t=l, then t~ = d~in-zt-l= O because dmi~=3
as discussed earlier. If we decreased the error correction
capability of our single error correcting example by one, i.e.,
t = t -1 = O, then t~~~W = d~i~-2t~~M-l= 2; in other words thisneu old,
results In a zero error’correcting, double error detecting code.
When we decrease the error correction capability of a perfect code,
we usually denote the resultant code as a non-perfect code.

<

TABLE 2e2-lo - DECODED
>

Number of Error
errors word .

0 [000]

1 [100]
1 [010]
1 [001]

2 [110]
2 [011]
2 [101]

3 [111]

WORDS AS A FUNCTION OF ERROR PATTERN

Received word Decoded code word
[101] / [010] [101] / [010]
transmitted transmitted

[101]

[001]
[111]
[100]

[011]
[110]
[000]

[010]

/

/

/

/

/

/

/

/

[010]

[110]
[000]
[011]

[100]
[001]
[111]

[101]

[101] /

[101] /
[101] /
[101] /

[010] /
[010] /
[010] /

[010] /

[010]

[010]
[010]
[010]

[101]
[101]
[101]

[101]

All (n,l) block codes can be perfect if n is odd; this example is
a perfect (3,1) block code. If this example was a non-perfect
code, like most others, then the code would have some error
detecting capability without sacrificing any error correction
capability. Error detection is obtained by recognizing that some
syndromes are invalid in that they are never to be used. More on
syndromes will be presented later.

In this example, code symbols are only one digital bit (or binary
symbol) in length. Therefore, this example is a binary block error
correction code.

This particular (3,1) block code is a random error correcting code;
it can correct some bit errors distributed randomly within a bit
(or code symbol) stream. It is not a burst error correcting code;
it cannot correct bursts of errors which are random errors that

.— . ——
–~~– hIsc-21s3.$

occur very, very near to each other.

This particular (3,1) block code is not a linear block code.
Linear block codes have the property that every code word summed
with any code word is a code word. Notice that all binary based
linear block codes have at least the all-zero code word because any
code word added to itself is the all-zero code word using modulo-2
arithmetic. This (3,1) block code doesntt have the all-zero code
word and therefore is grounds enough to ostracize it from being
linear. Also notice that if ye take all the code words in our
(3,1) block code and sum them all together we receive the word
[111]. [111] is not a code word; this is also grounds for
ostracism. Death to non-linear codes!

In this’example any double or triple error pattern can decode into
its ne%rest code word, BUT the decoder would not be able to decode
it into the correct code word. Notice that if the decoder did try
to correct the double,and triple error patterns into the original
code word that was transmitted, then the no error case and the
single error cases would not be able to decode correctly. Using
MLD we will correct all single and fewer errors. Since this
example is a perfect code, any pattern of more than t errors will
cause decoder errors. Summarizing for this perfect code example,
all errors look like either a single error or no error because the
decoder is using the MLD principle. Since all error patterns with
one or fewer errors decodes into the correct code word, we have a
single error correcting code. Since it happens to be a perfect
code, more than t errors cannot be decoded correctly or even
detected; more than t errors in a perfect code produces
undetectable decoding errors.

203 LINEAR BLOCK CODES

Figure 2,3-1 presents the relationships between many different
types of codes. From this diagram we can see how RS codes relate
to other error correcting codes. There are two types of error
correction codes: tree codes and block codes. Even though we can
sometimes combine them in certain ways using characteristics of the
other, we still have only two types of error correction codes.

.-.-.—....——.—..— ._.-.._ ——._:g_ xTst;-2fs34

1 TREE ERROR CORRECTIW COOES

I CONVOLUTIONAL COOES

BLm ERROR ~RECTIW ~ES

I LINEARBLOCKCODES

II CYCLIC CODES

PRIMITIVE, NON-PRIMITIVE,
q-ARY BCH CODES q-ARY BCH COOES

NON-BINARY ECH C~ES ‘ NON-BINARY BCH CODES

REED-SOLWON C~ES REED-SOLOt40N CODES

m ml

) !

Figure 2.3-1. - General Venn diagram of error correction codes.

Reed-Solomon codes are non-binary, BCH, cyclic, linear block error
correction codes.

The major characteristics of linear block codes are a block
architecture, optional systematic structure, and all code words are
sums of code words. It has a block length of n s~ols and a
message length of k symbols. If the code is systematic, then it
also has an unaltered data field of k symbols independent of the
associated parity-check field of n-k symbols.

Cyclic codes are a subset of linear block codes. They have the
same characteristics as other linear block codes, but with an
additional characteristic; every cyclic shift of a code word is
also a code word. Cyclic codes are easier to encode and decode
into systems than linear block codes. The encoding operation
(similar to the first decoding stage) can be implemented into
either a SRC or a linear sequential circuit. Also, the decoders?
implementations become more practical due to the increase in the
cyclic codes’ algebraic structure.

P-ary BCH codes are a special case of q-ary BCH codes which are a
subset of cyclic codes. P-ary BCH codes! code word symbols and
code word generator polynomial g(X) coefficients are from GF(P) for
P being a prime number. The field elements and the code word
generators roots of P-ary BCH codes are from GF(q)=GF(PT)

— .— ——— —. ——
-–io- N;SC-21834

for q being the order of the field and m being an integer greater
than one. They have the same characteristics as other cyclic
codes, but with an additional characteristic; P-ary BCH codes can
fairly easily be implemented into systems with any error correction
capability t of t symbols along with particular choices of the
message length k of k symbols and the block length n of n symbols.
Also, BCH codes can be either primitive or non-primitive.
Primitive BCH codes are defined as codes whose block length n is
P-l. Non-primitive BCH codes have a block length n other than
n=~-l; e.g., a shortened BCH code is a non-primitive code because
it has a shorter block length ‘n which divides ~-l. In general,
designing encoders and decoders for multiple error correcting P-ary
BCH codes is easier than for many other cyclic codes.

Binary ‘BCH codes are the most often used of the many P-ary BCH
codes;-binary BCH codes are simply 2-ary BCH codes. The code word
s~ols of binary BCH codes are binary; they are from GF(P)=GF(2).
The field elements used in binary BCH codes are non-binary; they
are from GF(q) = GF(~) = GF(2m) for q being the order (or size) of
the field and for m being an integer greater than one. Also, the
code word generator polynomial g(X) has binary (i.e., 2-ary)
coefficients from GF(P)=GF(2) and the code word generator’s roots
are from GF(p)=GF(2m). A t error correcting (t<2m”1),primitive,
binary BCH code has the following parameters:

block length: n = 2m-1 code symbols
number of parity-checks: n-k < mt code symbols
minimum distance: dmtn2 2t+l code symbols

These codes have some inherent error detection capability without
sacrificing any of the error correction capability. If some error
correcting capability is sacrificed for an additional error
detection capability t~, then the resultant t error correcting,
t~ additional error detecting (t~ is an even number)
binary BCH code would have the following parameters:

t primitive,

block le~gth: n = zm-~
number of parity-checks: n-k S m(t+(t/2))
minimum distance: d~i”2 2t+t~+l

code s~ols
code s~ols
code s@ols

P-ARY BCH CODES ARE ACTUALLY q-ARY BCH CODES. Binary BCH codes are
actually a special case of q-ary BCH codes. Also, non-binary BCH
codes are simply all q-ary BCH codes which are not binary BCH
codes.

A t error correcting, q-ary BCH code (with the code symbols and the
generators coefficients being from GF(q), the field elements and
the generators roots being from GF(qc), and c being an integer
greater than one) has the following parameters:

-.—-. —— .— .———
--11- hIsc-2183-[

block length: n = qc-l code symbols
number of parity-checks: n-k S 2ct code symbols
minimum distance: d~in~ 2t+l code S@OIS ‘

P-ary BCH codes can be derived from q-ary codes by simply setting
q=P to be a prime number and c=m to be an integer greater than one.
This means that for P-ary BCH codes, the generators roots (and the
field elements) are from GF(qc)=GF(Pc)=GF(~) and the generators
coefficients (and the code symbols) are from GF(q)=GF(P). For
binary BCH codes the generators roots (and the field elements) are
from GF(qc)=GF(Pc)=GF(~)=GF(2m) ‘and the generator’s coefficients
(and the code symbols) are from GF (q)=GF (P)=GF(2) .

Now, I would like to finally talk a little more about Reed-Solomon
codes ! RS codes can be derived from q-ary codes by simply setting
q=~ to-be a power of a prime number and c to be 1. This means
that for RS codes the generators roots (and the field elements)
are from GF(qc)=GF((P’”)c)=GF((~)l)=GF(~) and the generators
coefficients (and the “code symbols) are from GF (q)=GF (~) . A
t error correcting, primitive RS code has the following parameters:

block length: n = q-1 = ~-l code s~ols
number of parity-checks: n-k = 2t code symbols
minimum distance: dmin = 2t+l code s~ols

The code symbols of a binary based RS code are non-binary; they are
from GF(q)=GF(~)=GF(2m), not GF(q)=GF(P)=GF(2). For binary based
(i.e., P=2) RS codes, the generators roots (and the field
elements) are from GF(qc)=GF((~)c)=GF((~) 1)=GF(P”)=GF(2m)and the
generators coefficients (and the code symboIs) are from
GF(q)=GF(~)=GF(2m). A binary based, t error correcting, primitive
RS code has the following parameters:

block length: n = q-1 = 2“-1 code symbols
number of parity-checks: n-k = 2t code s~ols
minimum distance: dmfn = 2t+l code symbols. ..

For a primitive RS code, once the extension m and the base P are
determined, then the block length n is automatically set. Then
once either the error correction capability t or the message length
k is determined for a primitive RS code, the other is respectively
set. For eXample, if q = N = 2M = 23 = 8 (p=z denotes binary
based), then this can either be a (7,5) or a (7,3) or a (7,1) RS
code depending if t = 1, 2, or 3 syRtiolsrespectfully.

It should be noted that RS codes have very unique and powerful
features: RS codes satisfy the Singleton bound d~i~S n-k+l because
for a RS code, d~in==2t+l = n-k+-l. Therefore, RS codes are IIDSor
synonymously called optimal. l~tis also worth pointing out that

—— —.——..—.—-—.——_..—_.._ ——.— ——.
- i2-- :\Isc-21s34

the block length n of a RS code over GF(q)=GF(~) can be extended
to either q or q+l while still maintaining the MDS condition.
Also, a (n,k) RS code can be shortened to be a (n-l,k-1) RS code
(for 1 even and l<k) while maintaining the MDS condition. In other
words, some non-primitive RS codes are also MDS. Another nice RS
feature is that the designed minimum distance is exactly equivalent
to the actual minimum distance d i.e., d~in,minr =2t+l not dmin22t+l.
Typically, when RS codes are designed into a system we use binary
based (P=2) RS codes. Just like any other linear block code, RS
codes can be either systematic or non-systematic. Usually if
systematic structure is easily implemented into the system and does
not decrease the coding gain, we do it. RS codes are not only very
powerful burst error correcting codes, but can also be powerful
random error correcting codes.

,

2.4 SOME MORE RELATED.TOPICS

There are several other areas of the system with which the error
correction system must interface. We must be concerned with
choosing the correct code or combination of codes to most
efficiently meet or exceed the engineering problems of noise and
channel capacity. We must be concerned with the implementation
architecture and where the coding circuitry is located within the
system. We must be concerned with synchronizing to our message.
Besides these concerns and concerns which fall under these, there
may be other concerns to seriously consider. This section will
briefly address interleaving, modifying block codes, burst errors,
concatenation, and synchronization.

The error correction capability of burst error codes, concatenation
codes, and random error correcting codes can increase if
interleaving is performed. The purpose of block interleaving (in
regard to error correction coding) is to average out the bursts of
burst errors over several code words. Interleaving can be done by
simply shuffling the encoder’s output (or encoders’ outputs) to an
interleave depth 1. Instead of transmitting one code word followed
by another, we will transmit the first symbol of the first code
word, the first symbol of the second code word, the first
symbol of the Ith code word. Then we will transmit the second
symbol of the first code word, the second symbol of the second code
word, 909, the second symbol of the Ith code word. Then we will
keep repeating this until the nthsyxnbolof the first code wol;d,the
nth symbol of the second code word, ● .*, the nth s~ol of the Ith
code word has been transmitted. We then repeat this process by
taking another set of I code words and interleaving them the same

way. This algorithm is the usual method of block interleaving. If
the code is systematic, then all the consecutive (n-k)I ~Jarity-

— —..—. ——. ..——
..J~–

—. .—.. ._.

;l,j~~.j~~j.f

check symbols will follow all the consecutive kI message (or data)
symbols. The decoder must perform a similar operation of
de-interleaving (or de-shuffling). Besides block interleaving some
other useful interleaving algorithms worth mentioning are
convolutional interleaving (not related to convolutional codes) and
helical interleaving. In general, interleaving is simply
efficiently shuffling the symbols around to average out the very
long burst errors over more code words.

Block codes can be modified in six ways: The block length n can be
increased by attaching additional parity-check symbols (denoted as
extending) or by attaching additional message symbols (denoted as
lengthening) . The block length n can be decreased by removing
parity-check symbols (denoted as puncturing) orby removing message
s~ols ‘(denoted as shortening) . The last two ways are when the
block l%ngth n does not change, but the number of code words is
increased (denoted as augmenting) or decreased (denoted as
expurgating) . Modified.codes are sometimes about the same level of
encoding and decoding complexity as the original, unmodified code.
There are many ways to perform these modifications. Some
modifications effect the error correction capability and some do
not. To understand more about how to specifically modify a
specific code, the reader should reference a more detailed, text
than this tutorial.

Let a burst error length b be defined as the number of bits from
the first bit error in a bit stream to another bit error which is
within a particular portion of the bit stream such that there may
be some non-error bits in the burst error and such that there are
all non-error bits between consecutive burst errors. A RS code can
correct a maximum burst error length b~X of length b~X = (It-=l)m+l
bits within an interleaved block system of I code words being the
block of Imn bits. If interleaving is not performed, then 1=1. A
RS code can correct any combinations (or patterns) of t or fewer
errors within each code word. If interleaving is used, then a RS
code can correct most combinations (or patterns) of ~fIt’lor_fewer
errors within the frame of I code words being the block of Imn
bits. RS codes are very powerful burst error correcting codes and
can also be made to be very powerful random error correcting codes.

Usually noise possesses both random characteristics and burst
characteristics. This results in random errors and burst ~~rrors
within the received (or play back) data. Since codes are better at
either burst errors or random errors, concatenation b~~tween
different codes are often performed. Usually concatenation is when
an excellent random error code is used as the inner code a,ndan
excellent burst error code is used ~S the outer code.
Convolutional error correction codes are powerful random error

correcting codes. VThen random errors within the channel become
more and more like burst errors, the convolutional decoder
(Viterbi, sequential, or majority logic decoders) usually generate
burst decoding errors. These convolutional, burst decoding errors
could then be corrected by using a good burst error correcting
code, such as a RS code, as the outer code. The data sequence is
that data are input to the outer code encoder, then its output is
input to the inner code encoder, then its output is transmitted (or
recorded) , corrupted by noise, and then input (or played back) to
the inner code decoder, then its output is input to the outer code
decoder, and then finally its ohtput is either the decoded message
(or data) or the decoded message and corresponding parity-check.
Often this concatenation design results in superior performance
compared to a single code having some random error and some burst
error Correcting capability. However, we pay for concatenation
with a-decreased overall code rate.

Cyclic block codes rewire synchronization words for the decoder.
With cyclic block codes we usually attach synchronization words
onto the beginning of the transmitted code words. Usually this is
done synchronously and periodically by attaching one
synchronization word to every code word to be transmitted.
However, if the code words are interleaved, then we usually attach
one sync word to every I code words. Sync words typically do not
use error correction coding, but are typically designed to a
particular channel in an optimum manner. Cyclic block codes
usually are designed with sync words not only to sync to the
non-binary symbols (if the code is one with non-binary symbols),
but also to the first s~ol of the code word (or first symbol of
the I code words). However, synchronization for cyclic codes can
be established and maintained without using any sync words. These
types of designs are more complicated, require additional
processing hardware, increase the propagation delay, and are less
efficient today than using sync words. In comparing a block code
and a tree code, tree codes such as convolutional codes often do
not rewire sync words to acquire synchronization. Convolutional
codes have an inherent coding sync capability; most convolutional
codes are self-synchronizing codes. This coding sync is not a code
word (or block) sync, a code symbol sync, an interleaved sync, a
frame sync, a packet sync, or a header sync; it is just a sync for
the code to hopefully be able to decode the received bit stream
containing errors back into the original message. So, cyclic:block
codes reqllire synchronization determined either by appending
synchronization words to code words or by a lot of additional
processing. Obtaining synchronization for cyclic codles by
additional processing and not using sync words does not allow a bit
stream to be random; cyclic codes are not self-synchrc~nizing
because or~.lycertain types of data can be transmitted.
reqllil:e

Tree codes
synchronization usually determined from its self-

synchronizing structure, but they usually need more redundancy for
the same amount of coding gain compared to efficient cyclic codes.

2.5 WHITE, BLACK, AND GRAY ZONES

A perfect code only has a single white decision zone for error
correction. If the received word of a perfect code is closest to
one particular code word than any other code word AND is within a
distance of t symbols away from’it (i.e., TSt), then the received
word is in the white zone. Received words are decoded using MLD.
We should understand by now that MLD DOES NOT GUARANTEE TO ALWAYS
DECODE INTO THE ACTUAL MESSAGE THAT WAS TRANSMITTED. However, it
DOES GUARANTEE to always correctly decode the actual message that
was transmitted IF TSt actual errors were injected into the code
word. If T>t actual errors occurred in a perfect code, non-erasure
system, then the decoder would make an undetectable decoding error.
Actually, it is possible to add a little error detection capability
to a perfect code while retaining most or some the error correction
capability of the code. However, doing this transforms the p[~rfect
code into a non-perfect code. This can be done by denoting some
code words as invalid, thus not using the full t error corr(:ction
capability; this would create a black zone.

A code which is not perfect has a white zone, has a black zone, and
might have a gray zone. Reed-Solomon codes are not perfect!!! RS
codes have white, black, and gray zones. If the received word is
T<t (T S t~+t~tffor erasure systems) actual errors (the units are
code symbols or just symbols) or away from its nearest single code
word, then it is in the white zone; this received word is
guaranteed to be decoded correctly. If the received word ~LsT>t
(T > t~+t~1’for erasure systems) actual errors away from its nearest
single code word AND can be correctly decoded into this cod(~word
(this is a function of the particular code itself), then it is in
the gray zone. However, even though it is possible to correctly
decode words within a gray zone, it is not usually realizeci into
systems. Gray zones are not usually used because received words
within this gray zone are usually difficult to find and decode.
Therefore, almost all of the time, candidate words for th(~gray
zone are treated as if they are in the black zone. The last zone
is the black zone. If the received word is not in either the white
zone or the gray zone, then it is in the black zone; this received
word is not able to be decoded. Howeverf if the received word is
in the black zone, then the received word can be flagged as T>t
(T > t~+t~f’for erasure systems) errors have definitely oct:urred
within it; non-perfect error correction codes have some deg]reeof
error detection while retaining their full error correction
capability. The decoder can not correct any errors in the black

——. ——.—.—.+—. ———.
- ~(,.-

.-
:!ISC-21S3-I

zone, but if desired, the noisy message can be extracted from a
systematic received word. This may or may not be good enough. If
passing either the received word or the noisy message from a
systematic code through the system is not desired, then it might be
desired for the system to ARQ and/or throw the received word in the
trash or to the bit bucket!

It should also be noted that a non-perfect code (with t error
symbol correction capability and some error detection capability)
can be designed into a code with less error correction, less
undetectable decoding errors, and more error detection. This is
done by shrinking the white zone and increasing the black zone.

When we decode only using the white and the black zones,
perfomi.ng ‘tboundeddistance decoding.~t When we try to cor~ec~~~
decode- by also using the entire gray zone, we are performing
lfcompletedecoding.” Symbol erasure is NOT complete decoding.

In general, this zone ’idea helps us to graphically visualize the
concept of error correction coding. The white zone is typically
known as the error correction domain, the gray zone as the error
correction domain beyond the distance of t symbols (or beyond the
distance of tE+tE~lsymbols for an erasure system), and the black
zone as the error detection domain of an error correcting code.

2.6 S~Y

We got to see a super simple (3,1) block code example. Zt was
systematic in the sense that some portion of the code word always
contained the unaltered message, i.e., ‘lONS1= “ltt from the code
word llON’l= [010] and l’OFF~~= iIO~Ifrom the code word “OFFft= [101].
It is systematic, is not linear, and does not have a gray or black
zone, but it is a “perfectftcode!

We also “have been introduced to how block error correction
generally works. We have been introduced into decoding errors,
l~lLD,distance and weight, random and burst errors, concatenated
codes, synchronization, error correction and/or detection zones,
and the famous BCH codes which include the Reed-Solomon codes.
Some detailed definitions which have not yet been discussed
entirely will be discussed in the following chapters.

Now , enough introductory material. The remaining chapters work
some of the many RS coding algorithms for the case of our primitive
(15,9) RS code example.

CHAPTER 3
REED-SOLOMON ENCODING

Letls get into RS coding! There are many error correction coding
algorithms around, but we mainly want to consider very efficient
(or powerful) random and burst error correcting codes - RS codes.
RS codes are BCH codes which are a subset of cyclic block codes.
Cyclic block codes are a subset of linear block codes which are a
subset of block codes which are ‘a subset of error correction codes
in general. Therefore, RS codes are the great, great grandchildren
of block codes (see figure 2.3-l).

Within ‘this chapter we will start working our (15,9) RS code
example-. We will be able to apply the material learned or reviewed
from chapters 1 and 2. A RS block diagram of the encoder is
presented along with the parameters and equations necessary to
construct our transmitted words. And now for the fun!

3.1 REED-SOLOMON ENCODER

Since we explained a general block coding system in chapter 2, let
us now talk about RS coding in particular. Assume the parity--check
information CK(X) is obtained from the message information M(X) by
the modulo-g(x) function.

CK(X) = Xn-kM(X)mod g(x)

or CK(X) could equivalently be found as:

X“-kM(X)
= Q(X)g(X) + CK(X)

g(x)

where X“-kis the displacement shift, M(X) is the message, Q(X) is
the quotient, g(X) is the generator, and CK(X) is the parity-check.

The code word C(X) that
parity-check information
message information, C(X)
shift the message M(X) to
M(X) does not overlap and
code word
retain the
as simply
symbols to

c(x) = xn-kM(x)

we will transmit is comprised of the
CK(X) appended systematically onto the
= X“-kM(X)+ CK(X). The Xn”kpurpose is to
higher ground in order that the messzge
add to the parity-check CK(X) with!inthe
+ Xn-kM(X)mod g(x). This is done to

systematic structure. Systematic structure is dc:fined
taking our message symbols and appending parity--check
it without changing our message symbols. This is part

—— ——.
-ls--

—-
fist-21:;3.f

of the encoding process. The degree of g(X) is n-k and the degree
of Xn-kM(X)is either O [if M(X)=O] or from n-k to n-1 [if M(X)#O] ...
Notice that the Xn-kfactor in the parity-check CK(X) = Xn-kM(X)mod
g(X) forces the modulo function for all non-zero messages M(X),
e.g., even when M(X)=l, Xn-kM(X)mod g(X) = X“-kmod (Xn-k+..e) must
be calculated. The degree of CK(X) = Xn-kM(X)mod g(X) is from O to
n-k-1. Therefore, since n>k, the check information CK(X) never
overlaps the message information M(X). Thus, systematic structure
is retained. The message M(X) is in the k highest locations within
the code word C(X) ; the parity-check CK(X) is in the n-k lowest
locations.

s

If we desire to use a non-systematic code for some reason, then.

>
often we use C(X)nOn_~~~~~~i~= g(X)M(X)o

k
M(X)—/—)

.

n k
>m ~/—>

““w
u

1 1 >
~n-k–i–> t

n-k+l
g(x)—/—>

d
i
v

●

:
e

n-k
—/—>
CK(X) is

the
remainder

REED-SOLOMON ENCODER

—;—> c(x)

Figure 3.1-1. - Block diagram of a Reed-Solomon encoder.

Now , enough words. Let us finally see what a RS encoder looks
like. Figure 3.1-1 presents the block diagram for this RS encoder
and table 3.1-1 presents its associated polynomials.

TABLE 3.1-1. - POLYNOMIAL DEFINITIONS OF A RS ENCODER

message (or data or information) M(X) consisting of message symbols
Ifli: M(x) = 14~-lXk-1+ Mk-zXk-2+ ... + MIX + ~

generator (or code word generator) g(X) consisting of generator
symbols gf: g(x) = X*t+ g2t-1.y*t-1+ ● *. +g,x+90

.— ..—.——.——. —————. .——_________ —.
._;()_- nIsc-218x

TABLE 3.1-1. - Continued

parity-check CK(X) consisting of parity-check s~ols CKi:
CK(X) = Xn-kM(X)mod g(x)

= CKn-k-lXn-k-l+ CKn-k-zXn-k-2+ ● .. + CKIX + CKO

code word C(X) consisting of code word symbols Cf:
c(x) = xn-kM(x)+ CK(x)

= Xn-kM(X)+ X“-kM(X)mod g(x)
= Mk-lxn-’+ ● 9* + MOXn-k+ CKn-k-lXn-k-l+ ... + c%
= Cn.lx”-’+ cn2x”-*+ ● .O + C;x + c. 0

3.2 (nik) RS CODES

Given a single value of the Galois field extension m, i.e., GF(P”),
a set of RS codes with Varying error correction capabilities, block
lengths, and rates can”be constructed. The P“ unique code s:~bols
are constructed from the field generator polynomial F(X) and the
primitive element a(X). The parity-check information is obtained
using the generator polynomial g(X) with roots from GF(P”). A
(n,k) RS code is defined given values for m, n, and g(X). However,
when we get into the implementation we need to also know P (which
is almost always 2), F(X) [which is almost always a primitive
polynomial p(X)], a(X) [which is almost always X=a], and aG [which
is any primitive element of GF(P”) using F(X) and is almost {always
set to al in order to simplify the notation].

Table 3.2-1 lists all the RS codes in GF(2”) for mS4. The
bracketed (1,1) code shown in the table is presented to show that
any (k,k) code is not an error correction (and/or detection) code;
it is not adding redundancy. Notice the (3,1) RS code. I believe
this code is valid in that it can be encoded and decoded using the
standard procedures, yet it is edited from most (maybe all) coding
literature. I believe this is due to the fact that a (3,1) R,Scode
does not have a long enough block length to produce a subst;~ntial
decrease in error rate (or increase in SllR). A (3,1) RS code seems
to be the smallest RS code possible. It should lend itself to be
a good scholastic exercise. It can correct a maximum burst error
of one symbol within its block length of three s@ols; it can
correct a maximum burst error of two digital bits (or l~inary
symbols) if the burst error occurred within a single s~ol. It is
a single symbol correction code and can use the same field
generator as its code word generator polynomial.

From the table notice that a (n,k) RS code requires two
parity-checlcs per error; one is for the location within the code
;~’ordand the otl~eris for the error value at that location. That

——..—.-—.. —_- .____, _______ —-_-_- ——
.-50- SISC-21S34

is, n-k=2t.

From table
number of
Thus, once
we can pick
capability.
the number

3.2-1 it should also be noted that as m increases the
possible RS codes increases in an exponential manner!
the block length is determined from some fairly large m,
a code with a desirable pair of rate versus correction
The rate (or code rate) r of a code is the ratio of

of message symbols k to the block length n; r ‘=k/no
Let the block correction BC of a code be the ratio of the number of
correctable s~ols t to the block length n; BC = t/n. Let the

average message correction MCwg of a code be the ratio (~f the
average number of correctable message S@OIS t~ = (k/n)(t) =’rt to
the number of message S~OIS k: ~fcav~= tH/k = BCO It is desirable
but impossible, for the rate r to approach
error correction capability t approaches
parameter and a coding gain parameter is
importance.

100 percent while the
n. Usually a rate
of prime functional

.

TABLE 3.2-1.

m n

[1] [1]

2

3
3
3

4
4
4
4
4
4
4

3

7
7
7

15
15

++++** 15
.. 15

15
— 15

15

k

[1]

1

5
3
1

13
11

7
5
3
1

- RS CODES OVER GF(2m) FOR m<J

t r BC

[0] [100.0%] [00.0%]

444

1

1

2
3

1
2
3
4
5
6
7

33.3%

71.4%
42.9%
14.3%

86.7%
73.3%

+$+~~++$ 60.0% t4~44$$
46.7%
33.3%
20.0%
6.7%

33.3%

14.3%
28.6%
42.9%

6.7%
13*3%
20”0%
264,7%
33:,3%
40(.0%
46,7%

3.3 (15,9) W P~~JIIETERS

A prinitive RS code has the following parameters over GF(P’n):

bloc~: length .=n ~ p~_l (units are s~bols)
parity-cllecl~length = n-k ==2t (units are symboJ.s)
minimun distance = d = 2t+J.r-,!n (~lnitsare sytiols)

._—— __._.—.—-——.--——————-——--—--——--——-——————_-—— _ .—— ——+... —.-—-——.—
–51— ‘}1};(:-:!/;.;.:

All right, let us select a code from table 3.2-1. Let us use the

(15,9) RS code as our example that we are going to work throughout
this tutorial. The (15,9) RS code is a classical choice for an
instructional example.

People usually compare codes in two viewpoints: The first is the

theoretically possible viewpoint and the second is the let us
implement it viewpoint. Coding engineers often compare codes by

trying to maximize channel capacity which automatically brings in
factors of high code rate, StJR,message throughput, and detectable
and undetectable decoding errors= Others are concerned with these
factors too, but still must hold a different viewpoint.

Implementation engineers often compare codes bY a subjective
function of need, performance, risk, and the allocation of
resources.

Because this is a tutorial and is meant to help people understand,
the classic (15,9) RS Code is chosen
construct our (15,9) RS coding example
in the following table.

to be demonstrated. ~Jetus
with the parameters as shown

TABLE 3.3-1.

block length
message length

code rate

- THE PRIMITIVE (15,9) RS EXAMPLE PARAMETERS

n = 15 symbols
k= 9 symbols

r = k/n = 60%
parity-check s@ol length n-k = 6 s@oIS

minimum code distance d = n-k+l = 7 s~ols
min

error correction capability t = (n-k)\2 = 3 sT@ols

block correction capability (n-k)/2n = 20%
average message correction capability (n-k)/2n = 20%
Galois field order q = n+l = 16 s~ols

~j~is is a binary based system (i.e., P=2) becausja
~q = q = 16 = (2)(2)(2)(2) = 24 for P being prime. This
‘dEtemines that P=2 states per 2-ary SP~Ol (i.e.,
2 states per binary symbol) and that the code symbol
length m is 4 binary syxnbols.

number of code words
nu~~er of received l~’ords

pti . 236 > 1010words

P= 26~ > 1018k’ords

nurber of undetected decoding errors
nu~b?erof error patterns

@ = 236 > 1010 words
Pm = 2t’0> 10’9 i’1’ords

_—.—— — .—.——— .—— ..-—— —-.-—.—...—— ..— .—— .——
i7_ ;,l>’~.~1:;.:.$.-

g(x) = [(X+a) (X+a2)] [(X+a3) (X+a4)] [(X+a5) (X+a6)]
= [X2+(a+a2) X+a3] [X2+ (a3+a4) X+a7] [X2+ (a5+a6) X+a”]
= [X2+a5X+a3 J [X2+a7X+a7] [X2+a9X+a”]
= [X4+(a7+a5)X3+(a7+a12+a3) X2+ (a12+a10) X+a’O] [X2+agX+a”]
= (X4+a13X3+a6X2+ a3X+a10) (X2+agX+a”)

X6+ (a9+a13) X5+ (a’’+ a7+a6) X4+ (ag+l+&3) X3+ (a2+a’2+a’0) X2+ (a’4+a4) X+a6
4s+a6x2+agx+a6D X6 + al”xs + aq4x4 + a x

Therefore, the generator polynomial g(X) = X6+a’0X5+a’4X4+a4X3+a6X2+a9X
+a6. Remember that we used a, a2, a3, ● oef a2t as our roots of g(X) .
These roots will be used in chapter 4.

If we had wanted to, we could have constructed our generator
polynomial g(x) as also being a self-reciprocating polynomial
f(x)~.r = Xif(x-’)● Self-reciprocating polynomials have equivalent
jth and i-jth coefficients. The g(X) that we are going to use is
not a f(X)~-~because 1 # a6, a’” # ag, and/or a’4 # a6= An eXamPl;4 ;f

x6+a10x5+a14x4+a4x3+a x+a self-reciprocal polynomial is f(X),.,=
alOX+l. Not all f(x);., are a valid g(x)- However, one is
guaranteed to construct a self-reciprocating generator polynomial
g(x)~-rby choosing FCR = 2m-1-t= (n+l)/2-t and aj=a(X)=a for (n,k)
primitive RS codes. The 2t roots are the following:

CY2
(m-l)-t (m-l)-,

t***r a2 ,a2(m-’), a?(m-’)+l, . . . ,a2(m-’)+t-’.

In other words, the self-reciprocating generator polynomial g(X)~.~
is

Z(m-l)-t (m-l)+,
. . . (X+a2(m-’)-’)(X+a2(m-’)) (X+a2) . . . (X+a

Z(m-l)+t-l
g(x),., = (X+a)).

The greatest advantage of using a self-reciprocating generator
polynomial is that our RS encoder and syndrome decoder require less
hardware.

Primitive RS codes are non-binary BCH codes and use the g(X) forms
as previously shown. Other codes may use a different g(X).. Make
sure you are using the correct g(X) for the correct code; RS codes
rewire g(x)RS~~”

3.3.2 Code Word Polynomial C(X)

Now since we have determined our generator g(X), we can construct
the parity-check CK(X). Then we can append our message field M(X)
to it and thus construct our systematic code word C(x). Let us now
continue our (15,9) Rs example with say
M(x) = 0X8+-0X7+OX6+OX5-tO#+OX3+OX2+a’’X+0 = a“X which represents the

TABLE 3.3-1. - Continued

number of correctable error patterns (bounded distance decoding) : “

~0 (~)(~-l)i = ~ (n)ni> (n)nt= (n!/(t!(n-t)!))nt > 101°.words
i=O i t

From section 1.4.3:
field generator F(X) = X4+X+1
the primitive element a(X) = X = a

s

From section 3.3.1:
code word generator g(x) = xb+alox5+~14x4+a4x3+abx2+a9x+ab

the code word generators primitive element aG=al=a
the first consecutive root of the code word generator FCR = 1

3.3.1 Generator Polynomial q(X)

To be able to decide what parity-check information CK(X) to append
onto our message M(X) we must first determine our generator g(X)
for a primitive RS code.

Where FCR is the power of the first consecutive root in g(X) and aG
is any primitive element of F(X). It should be noted that any
primitive element aJ does not have to be the same primitive element
as the one used to generate the field; i.e., aG does not need to be
a(X)=X=a. For our primitive (15,9) RS example, aG can be any one
of the following primitive elements a, a2, a4r a7, a8, all, a13, and
Q140 For our (15,9) RS example, we will select the code word
generators roots to be consecutive powers of aG=a’=a. We willlalso
arbitrarily start at FCR=l. The first consecutive root in g(X) is
(aG)FcR = (al)l= al = a which just so happens to be the same as our
primitive element a(X)=X=a. If we let a(X) = (aG)FcR, then some of
the notation burden is simplified:

fg(X) =fml (X+ai) = (X+ a)(X+a2)...(X+a2t)

2t
g(x) = ~. gJxJ = X2t+”g~t-fX2t-’+...+glX+g~

_———.. .—— ————.-—— —-.—— —
–:).3-- 31SC-21834

message [OOOOOOOa”O] which is the binary
000000000000000000011100000. ‘t

c(x) =
=
=
=

The
g(x) =

(a

.

X“-kM(X) + CK(X)
Xn-kM(X) + (Xn-kM(X))mod g(X)
(X6) (CC1lX) + (X6) (allX) mod g(X)
(allX7) + (allX7) mod g(X)

calculation of allx7

symbol

mod

sequence

“ g(x)

“000000000

where
x6+a10x5+a14x4+a4x3+a6x2+a9x+a6is presented as follows:

a8x5+a10x4+Q4x3+a14x2+Q8x+a12
. . .

a“X+ae + g{ x)
,l”x5+a14x4+a4x3+a6x2+a9x+a6lallx7

a“X7+a6X6+a’oX5+ ti+a2 X3+a5 X2+a2x
a6X6+a’oX5+ x4+a2x3+a5 x2+a2x
a6X6+a X5+a5 #+a’0X3+a’2X2+ X+a’2

o 5 4 2 103 5 122 2+a)X5+(l+a)X +(a +a)X +(a +@)X +(a +l)X+a12 = aa x5+alox4+a4 x3+(y14x2+a8x+a~2

mod g(X) = a8X5+a’oti+a4X3+a’4X2+a8X+a’2CK(X) = (Y”X7

Just as itts
tutorial, it

difficult to place the division
is sometimes difficult and nerve

all this algebra using the standard notation.
either writing a program to make calculations
using the following shorthand form as much as
just repeat what we have
notation.

The calculation of 11.7 mod
6.2,9.1,6.0 is as follows:

just done, but

calculations in this
racking to write out
Therefore, I suggest
in a finite field or
possible. So let us
use this shorthand

g(X) where g(X) = 0.6,10.5,14.4,4.3,

8.5,10.4.4.3.14.2,8.1,12.0
11.1,6.0+ 9(X)

O.6,1O.5.14.4.4.3.6.2,9.1.6.OI11.7
11.7.6.6,10.5.0.4,2.3,5.2,2.1

6.6,10.5,0.4,2.3,5.2,2.1.
6.6, 1.5; 5.4;10.3;12.2;0 .1,12.0

(10+1).5, (0+5).4,(2+10>.3,(5+12) .2, (2+0).1,12.0 = 8.5,10.4, 4.3,14.2,8.1,12.0

Using either notation produces the same
CK(X) = 11.7 mod g(X) = 8.5,10.4,4.3,14.2,8.1,12 .0.

Continuing with the (15,9) P.Scode example:

c(x) = a“X7 + CK(X)
= a’*X7+ CY”X7mod g(X)
= a“X7 + a8X5+aloti+a4X3+a’4X2-t-a8X+a12

Therefore, the c(x)

results;

for 14(x)=a”x

c(x) = a“X7 + a8X5+a’0X4+a4X3 +a’4X2+a8X+a’2.

It is possible to demonstrate that the linearity principle holds
for any RS code word; RS codes are the descendants of linear block
codes. To show this, assume MI(X) = a5X3 and MZ(X) = allX.
Linearity is demonstrated if C1+Z(X)= C,(X) + CZ(X). Solving for
C,(X) with MI(X) = a5X3:

cl(x) = (X6) (a5X3) + (X6) (a5X3) mod g(X)
= a5X9 + a5X9 mod g(x)
= a5X9 + a’3X5+a’2X4+a59X3+a’3X2+a2X+a’2

CZ(X) is what we calculated earlier for MZ(X) = M(X) = allX:

C*(X) = a“X7 + a8X5+a’0X4+a4X3+a’4X2+a8X+a’2

Solving for C1+2(X)with M1+2(X)= M1(X)+M2(x) = a5x3+allx:

C1+2(x) = (x6) (a5x3+a11X) “+ (x6) (a5x3+a11X) mod g(X)
= (a5X9+allX7) + (a5x9+allx7) mod g(X)
= a5X9+a”X7 + a3X5+a3X4+a8X3+a2X2+X

Now to see if this linearity demonstration works, we need to check
that C,+z(X) = cl(x) + C2(X).

C1+2(X) ?=? cl(x) + C2(X)
?=? (a5X9 + a’3X5+a12ti+a5x3+a13x2+a2x+a12)

+(a11x7 + a8x5+a10#+a4x3+a14x2+a8x+a12)
?=? CY5X9+ a“X7 + a3X5+ a3X4+a8X3+ a2X2+ X
?=? a5X9+a”X7 + a3X5+a3ti+a8X3+a2X2+X
?=? cl(x) + C2(X) YES !

Therefore, since CI+2(X)= C,(X) + C2(X) = a5X9+a”X7 + a3X5+a3X4+a8X3
+a2X2+X in this example, the linearity principal is demonstrated.
This is due to the fact that RS codes are cyclic linear block
codes. Cyclic block codes have the characteristic that each of the
code words are cyclic shifts of others, but not all others. “,Also,
the sum of any two code words is another code word. Since RS codes
are both linear and cyclic, it is useful to incorporate these facts
into the hardware design (see appendices A and B).

3.4 SUMMARY

Well, we should now all be semi-experts on RS encoding! l~eknow
microscopically what systematic primitive RS error ‘correction
coding is; take your message and append on some specific
parity-check to it and send it through the coding channel. Refer

to appendix A to know how to construct the encoder using shift
registers.

And now on to Reed-Solomon decoding. ..

——.——.. ..-—.-——-—— —— —
--57-– I\Isc-21s3i

CHAPTER 4
REED-SOLOMON DECODING

Chapter 1 was about GF arithmetic, chapter 2 about block codes,
chapter 3 about RS encoding, and now we are going to decode what we
encoded in chapter 3. The decoding process is to determine our
best estimate of the channel error from al set of unique
characteristics which form an identifiable error pattern; these
characteristics are known as’ the syndrome components Si or
collectively known as the syndrome s(X) (or as the syndrome matrix
s). After the estimated error E(X)t is subtracted from the
received word R(X), our estimate of the transmitted code word C(X) 1
is determined. We call
Remember, if the error
exceeded, the decoder
word C(X)!

,

this estimate the nearest code word C(X)t.
correction capability of the code is not
always decodes to the original code

Decoding processes are almost always more difficult to understand
and to implement into hardware than encoding processes. There are
several devices commercially available today which perform some of
the RS codes. However, the decoding process usually requires
efficient processing and thus usually requires shift register
circuits and/or computer-like circuits. Small, less powerful error
correcting codes are fairly easy to accommodate even at high data
rates. Larger, more powerful codes require more processing and are
a challenge to accommodate sustained high data rates. JIt is
sometimes tough when the decoding of high data rate data must be
perfomed in real time.

THE DECODING PROCESS IS A FIVE-STAGE PROCESS:

1. Calculate the syndrome components from the received word.

2. Calculate the error-locator word from the syndrome
components.

.

3. Calculate the error locations from the error-locator
numbers which are from the error-locator word.

4. Calculate the error values from the syndrome components
and the error-locator numbers.

5. Calculate the decoded code word from the received word,
the error locations, and the error values.

The decoding process is a five-stage process. First calculat[zwhat
is called the syndrome s(x) or equivalently the 2t syndrome

..—— — ..—__., _______ .——.
—j\;_ AISC-21834

components Sf. The syndrome can be determined in either of two
methods: Si = R(ai) (=E(aI)) or s(X) = R(X) mod g(X) =
REM [R(X)/g(X)] where Si = s(ar) from I = Gi from g(x)R~ codewithin
section 3.3.1 (or appendix D). For our classic example of the
(15,9) RS code using a(X)=X, FCR=l, and aG=al, the 2t syndrome
components are simply S~ = R(ai) (=E(ai)) = s(ai) for i=l,2 ?.**?T.
From all the Si calculate the error-locator polynomial o(X); this
can be calculated in either of two methods: the linear recursion
method or the Berlekampls (and Massey’s) Method for error-locator
polynomial O(X). From the error-locator polynomial a(X), first
calculate the error-locator nu’mbers zi for i=l,2, ...,T and then
calculate the error locations xi for i=l,2,T. this can be
calculated in either of two methods: the Chien Search Method or
the Explicit Method. From the error-locator numbers Zi and the
syndrom”e components Sit calculate the error values Yf for
i=l,2,J..,T; this can also be calculated in either of two methods:
the direct method or the error evaluating polynomial method. From
the error locations xi.,andthe error values yi, the estimate of the
error E(X) ‘ [or synonymously the decoded error pattern E(X) ‘] is
specified. Finally, the fifth stage is the determination of the
nearest code word C(X) t from R(X) and E(X) ‘.

Sometimes this five-stage process is thought of as three simple
steps: Step 1 is to calculate all of the syndrome components.
Step 2 is to determine the error-locator polynomial. Step 3 is to
determine the decoded error pattern from the error-locator and the
syndrome components and then proceed to correct the errors by
subtracting the decoded error pattern from the received word. If
one prefers to think of the decoding procedure as three steps, then
step 1 = stage 1, step 2 = stage 2, and step 3 = stages 3,4, and 5.
Step 2 is the most difficult.

It should be noted that sometimes designers like to design a sixth
stage (or a fourth step) into the decoding process. This optional
sixth stage is calculating the syndrome of the decoded code word
C(X) ~ to. ensure that Si=O for all i; this guarantees that the
decoderls output is indeed a code word. If the S,#O for all i,
then

4.1

something malfunctioned; we shall not have malfunctions!

WED-SOLOMON DECODER

At the receiver, if we wanted to, we can immediately check for the
presence of errors by calculating the parity-check s~ols from the
received message s~ols and comparing this result with the
received parity-check symbols. If the two parity-check :symbol

patterns match, then either there are zero errors in the ret~eived
word (**hi.che~ates to the original code word being decoded) (2Rtile

—.—— —— -.._. _____ ..——. .——.
- >L]– ;\is(_’-2lF;34

error pattern was identical to a non-zero code word (which equates
to a decoded code word different than the original code word). If
errors occurred, we get into the fun of finding out where the
errors took place and what the values of the errors are. The
errors can be injected in either the message part of the code word
X“”kM(X) and/or in the parity-check part of the code word CK(X)
where C(X) = X“-kM(X)+ CK(X). The symbol locations in the received
word R(X) where the errors took place are simply denoted as the
error locations Xi. The error values at these symbol locations in
R(X) are denoted as the respective error values yf.

6

The block diagrams of a RS decoder and the coding channel are shown
in figure 4.1-1 and its polynomials’ representations are given in
table 4.1-1.
the decoder
actual~ has
yif and then
determined?

The block diagram seems simple enough, but how does
determine E(X)t given only R(X)? Well, the decoder
to determine the error locations x~, the error values
E(X)? is specified! But then how are the xi and y~
Well, we w,illget into that later within this chapter.

.

c(x)—;—>

E(X)—;—>

R(X)—?—>

1
1 I

CODING CHANNEL

“m’
+ ->

c(x) t
D
E
M
u
x

—;—> R(X)

k
—> —/—> M(x) ‘

n-k
—> —/—> CK(X) t

(optionao

.

REED-SOLOMON DECODER
A

Figure 4.1-1. - Reed-Solomon decoder block diagram.

TABLE 4.1-10 - POLYNOMIAL DEFINITIONS OF A RS DECODER

received word R(X) consisting of received symbols R{:
R(X) = C(X) + E(X)

= [(C~.l+E~.;)in-l+ (C~-z+En-2)Xn-2+ ... +
= Rn.lXn-l+ Rn2Xn-2+ ... +RIX+~-

decode error pattern E(X)& consisting of
error values y{:

decoded code word C(X)? consisting of code
E(X) Q = R(X) + E(X)ic(x) 1 = R(X) -

= X“-kM(X)
=’Xn-kM(X)

=Cn.lfx”-’

decoded message
message symbols

+ CK(X) t
+ Xn-kM(X)rmod g(x)

(C1+E1)X+ (CO+EO)]

error locations Xt and

word S@OIS Cit:

+ C“.2fXn-2 +
● ** + C1’X + co’

(or data or information) M(X) t consisting of
M;l: “

M(X)t = Cn-llXk-’+’Cn21Xk-2+ ... + Cnk+ltX+ C f
k-l+ Mk-2txk-2 + . . .= Mk.l1X . + M1;X

+ ~n;k

decoded parity-check CK(X) ‘ consisting of check symbols CK*C:
CK(X) t = C~-k-lIXn-k-l+ Cn-k-2~Xn-k-z+ ... + Cltx + cot

= C~-~.l‘Xn-k-l+ C~-~-2tXn-k”2+ ... + CK11X + C~O

To determine our best guess of what was transmitted, E(X)? is added
[equivalent to GF(2) or GF(2”) subtraction] to R(X) to correct R(X)
into C(X) ‘. Hopefully C(X)l is C(X); in fact C(X)t is EXACTLY C(X)
if the error correction capability is not exceeded!

4.2 SYNDROMES

With M(X) = allX and C(X) = a~~X7+
section 3.3.2, let us complete the
decoding.

a8XS+atoti+a4X3+a14X2+a8X+a’2 from
first stage of the (15,9) RS

Assume some noise was injected into the coding (or communications)
channel and as a result some of the binary symbols (or bits) within
two code sy-mbolswere altered; errors occurred in the X“ and the X2
locations.

suppose R(x)

Notice that

= x8+~31x7 + ~8x5+a10~+a4x3+a3x2+a8x+a12.

the coefficients of X8, part of the RS data source

...— .——
-fil–

field [Xn-kM(X)], and X2, part of the RS check symbol field
[Xn-kM(x)mod g(X)], has changed from O and CY14to 1 and a3
respectfully. This example just so happens to show the right most
binary symbol within both of the error symbols as being flipped:
vectors (0000) and (1001) to vectors (0001) and (1000)
respectfully. REED-SOLOMON CODES NOT ONLY CORRECT SINGLE BIT
ERRORS (i.e., binary error symbols) WITHIN A CODE SYMBOL, BUT ALSO
ANY NUMBER OF BIT ERRORS WITHIN A SYMBOL! This is why we generally
speak of RS codes correcting symbols and not bits; RS codes are
burst error correcting codes including some degree of random error
correction capability. The output of the RS decoder should strip
off these errors from R(X) and result in C(X) ‘.

The word ~~syndrome~tis defined in a dictionary as a group of signs
and symptoms that occur together and characterize a particular
abnormality. It is also defined as a set of concurrent things that
usually form an identifiable pattern. In the coding application
syndrome components Si.are these individual characteristics that
characterize a particular error pattern (abnormality). The
syndrome s(X) is simply the accumulation of these characteristics
where Sf=s(ai).

The syndrome components SI can be determined in either of two
methods as presented in sections 4.2.1 and 4.2.2.

4.2.1 Method 1: Syndrome Components Si

Si = R(CY1)= R((CYG)i)for i = FCR,FCR+l ,...,2t+FCl-l and for the code
word generator primitive element CYG. For our RS example, Si=R(af)
for i=l,2,2to

R(X) = X8+a11X7+ a8Xs+a10fi+a4X3+a3X2+a8X+a12

s, = R(a) ,
= (a)8+all (a)7+a8(a) 5+a'0(a)4+a4 (a)3+a3(a) 2+a8(a)+a'2

~8 +alla7 +a8a5 +aloa4 ~a4a3 +a3a2= +a8a +a12
a8 +Q18= +a~3 +a14 7 +as 9 +&12

= (a8 +a3)+ (a13 +a14) ;~a7 +as) ;~a9 +a’2)
= (a13)+(a2)+(a13)+(a8)
= (a13+a13) + (Q2+a8)
= (o)+(2)
= 1

.

——.—————.-——.—.--..—.. ..—.--—.—..—.-——.——
-(12-- fifsc-21s34

S* = R(a2) = 1
S3 = R(a3) = a5
S4 = R(a4) = 1
S5 = R(a5) = O
S6 = R(a6) = a’”

Therefore, the syndrome components are S1=SZ=SL=l,S3=a5, S~=O, and
S6=a10e Notice that in this example, i.e., ‘2 = (s1)2 = 1,
S4 = (Sz)z= 1, SA = (S3)2= a’”, and S~ = O. S2i= (S1)2for RS codes
is not the general case;

‘2i = (s1)2 occurred because we had a
special type of an error patterti. It should also be noted that the
syndrome components are not the coefficients of the syndrome
polynomial s(X). The syndrome components are of the form Si=s(ai)
for aG=a’.,

4.2.2 Method 2: S~ndrome Polynomial s(X).

The syndrome components Si can also be found by first determining
the syndrome s(X) = REM [R(X)/g(X)] = R(X) mod g(x). This method
works for both systematic and non-systematic codes. Then the
syndrome components Si can be found by Si = s(a’) for
i = FCR,FCR+l,FCR+2l-l. For our (15,9) RS example, Si = s(aI)
for i = 1,2,2t. These calculations are left as an exercise!
The results of this exercise are the same as the results found in
section 4.2.1 and appendix C: S1=S2=S4=1,S3=a5, S5=0, and SA=alO.
The Si and the s(X) can also be calculated using matrices as later
presented in appendix C. Remember that in order to ease the hand
calculation burden, we can use either the shorthand method of
aiXj=i.j or write a program to perform the calculations.

4.3 ERROR-LOCATOR POLYNOMIAL o(X)

a~(X) is known as the reciprocal of the error-locator polynomial
(7(X) where the roots of ~r(x) yield the error-locator (or
error-location) numbers zi. a(X) is known as the error-locator
polynomial where the inverse of its roots yield the error-locator
numbers Zi. The degree of either o~(X) or o(X) determines the total
number of error symbols T which for non-erasure systems is less
than or equal to the error correction capability t. In RS ceding,
understanding is often easier using o~(X) to find the z~ rather than
o(x) .

The syndroinecomponents Si are kno~in;the error locations xi and the
error values yi are not known. The Si are related to the Zi (i.e.,
also the lfi) and the yi by the following set of independent

.—. —..—
--(,J-- 711SC-21834

NON-LINEAR Simultaneous equations (equation 4.3-1) called the
weighted power-sum symmetric functions.

where i=FCR,FCR+l,2t+FC1.l,
s{ = ~ yjZji and where T for non-erasure example (equation 4.3-1)

j=l is the number of errors t~st.

In our example, i=l,2,T. because FCR=l is the power of the
first consecutive generator root.

Usually there are many solutions’to this previous set of NON-I,INEAR
equations; these solutions are within a distance of t errors.
However, there is always only one correct solution within a
distance of t symbols; the correct solution is simply the a~(X)
polynomial representing the fewest errors (i.e., the lowest
possibl-evalue of T) occurring which satisfies e~ation 4.3-1.

Once o~(X) is known, the error locations xi can be determined and
then equation 4.3-1 simplifies into a standard set of independent
LINEAR simultaneous equations. We all can then solve these LINEAR
equations for the yi!

Berlekamp came up with an efficient iterative algorithm denoted
appropriately enough, Berlekamp!s iterative algorithm for finding
the error-locator polynomial u(X). If you can come up with a
better algorithm than Berlekampls iterative algorithm to find the
solution with the fewest terms (or errors) out of a set of many
solutions growing exponentially as code length increases, you might
become a millionaire!!!

Appendix D presents more details of the link between the
error-locator polynomial and the weighted power-sum symmetric
functions.

There are two methods we can implement to solve for o(X):
Berlekamp:s algorithm for o(X) presented in sections 4.3.1,1 and
4.3.1.2 and the linear recursion method for o(X) presented in
section 4.3.2.

4.3.1 Method 1: Iterative Alqorithm for u(X)

There are two equivalent presentations of Berlekampts algorithm:
BerlekampQs algorithm presentation for finding u(X) and the
Euclidean division algorithm presentation for finding o(X). C)neof
the most common ways to present Berlekamp’s algorithm is in a table
format and will be denoted as Berl.ekamp’salgorithm presentation.
Berl-ekanp’s algorithm presentation is a little simpler to follow;

————.——.—.. -.—...._._—— —-——— —.--— .-—-— --—.-——..——
–.()j– ;~fs{-.2~s3i

the Euclidean or greatest common division (GCD) presentation is a
little easier to intuitively understand. Regardless of the
presentation style, the algorithms determine the o(X) polynomial
with the least number of terms which is the single solution linked
to a set of simultaneous NON-LINEAR equations. Since there is more
than one possible solution to equation 4.3-1, we
the link or(x) with the lowest degree.
equation 4.3-1 into a set of solvable LINEAR

use MLD and pick
Ur(x) transforms
equations always

possessing a single solution. This single solution is simply the
decoded error pattern E(X) ‘.

*

4.3.1.1 Berlekamp’s Algorithm Presentation
,

Table $.3.1-1 presents the most common presentation in describing
the Berlekamp’s iterative algorithm. Following this,
table 4.3.1.1-2 is then developed for our primitive (15,9) RS
example.

TABLE 4.301.1-10 - BERLEKAMPSS ITERATIVE RS ALGORITHM FOR FCR=l

u Ap–

-1 1 1 0 -1
0 1 sFCR=sl 0 0

1 ● ☛☛ ● 9* ● ☛☛

● ☛☛ ● *9 ● 00 ● eo ● 00

2t a(x) --- --- ---

PROCEDURE TO FILL IN TABLE 4.3.1.1-1:

1. If dP = O, then u(fl+l)(X)= o(~)(X)and h~+l=h~.

2. If dP # O, then find a row before the pth row, call
it the Pth row, such that p-~ has the largest value
in its column before the pth row (~ may be one 01:
several values) and dP # O and then:

———.——— —..——
05- ;\lsc.2]s3.f.

3. In either case:

dp+l= sy+z+ al(u+l)~ + + CTh (B+l)sfl+l ““” (y+l) ~+z-h(~+1)

where CJi(~+l)are
ol(~+l)x+ ~2(#+1)x2

the coefficients of a(~+lj(x)= I +
+ .. 0+0 (fl+l)xh(~+l)

h(~+l)

The following are a few
table 4.3.1.1-2 for our primitive (15,9) RS example.

choice calculations used in developing

At row #=1, the value p=O:
1

do=SFCR=sl=l

P = -1 >
o(l)(x)= -1(O-(-l))o(-l)(x) =O(o)(X)+ do(d.l)x 1 + (l)(l)-l(X’)(l) = 1 + x

Continuing at row M=l with the value u=O:
‘.

h, =MAX[ho, h.l+O- (-l)]=MAXIO, O+O+l] =MAXIO, l]=l
d, =s2+01(’)s1 =1+’(1)(1) =1+1=0

At row F=2, the value P=l:

dl=o
O*(X) = o’(x) =1+X
h2 = h,

d2 = S3

= 1
+ O,*SZ = ~5+(l)(l)=a5+l=a10

And so on, and so on, and so on, until a(X) is obtained:

o(x) = ~zt(x) = ~6(x) = 1 + x + a’0x2 = a10X2+X+lo

Note that the calculations for O(K)(X)and d~ use finite field xnath
and the calculations for hg and ~-hy use infinite field math. The
results aie presented in table 4.3.1.1-2. —

——
-(16-

.—
:\isc-21s34

TABLE 4.3.1.1-2, - EXAMPLE OF TllEBERLEKAMPIS ITERATIVE ALGORITHM

-1 1 1

0 1“ s~cR=sl=l
0 -1

0 0

*

1 1+X 0 1 0 (pick P = -1)
2 1+X ~lo 1 1’
3 l+X+a10X2 o 2 1 (pick ~ = O)
4 l+ X+a’0X2 o 2 2
5 l+X+a10X2 o 2 3

2t=6 l+X+a’0X2 --- --- ---

.

Therefore, the error-locator polynomial o(X) =a1°X2+X+l. Then, 01=1
and az=a’o are from o(X) = a’0X2+x+l = 02x2+a1x+uo. These ~i are the
coefficients to the ‘error-locator polynomial o(x) and its
reciprocal a~(X). o(X) and cJ~(X)are related by the following:

or(x) = ~T~(x-l) = x2(l+x-l+a10x-2) =X2+X

Therefore, the error-locator polynomial
and the error-locator polynomial a(X) =

We have completed Berlekampts algorithm.
same iterative algorithm is presented in
them to be the same algorithm.

+ a’”

reciprocal Or(X) = X2+X+a’0
a’0X2+X+l.

In the next section this
a different way; I believe

4.3.1.2

Let s(x)

Euclidean Division Algorithm Presentation

~ $ Sixi-l = s, + S2X + . . . + s~fi + S6X5 = a10x5+x3+a5x2+x+l
i=l

Divide X2tby S(X), then s(x) by r,,
degree of r~ s t:

Divide y by S(X):

a5X +0 + s(x)
alox5+x3+a5x*+x+l I X6

x6+cr5x4+a10x3+a5x2+a5x
a5X4i-a’0X3+a5X2+a5X

——.— —...—.—..-. .— .__. __._.,_____
–[,-y– RISC-21834

X6

= a5X +
s(x)

X6 = (asX) S(X)

= (q,)S(x)

KEEP GOING!!!

a5X4+a’0X3+a5X2 +a5X

s(x)

+ (a5X4+a’0X3+a5X2+ a5X)
+(

The

rl:

‘1

degree of

)

r1=4 t=3 ●

Divide

s(x)

S(X) by

1
alo + —= a5X +

>‘1

s(x) =
=

‘1

‘(a5X + al”)rl + 1

(q~)r, + rz

STOP! !! The degree of ‘rz=OS t=3.

Put the previous results into the following fore:

S(x)a(x) = A(X) + X2tB(X)

A sumary of the previous results is:

‘1 =# + qls(x)
‘2 = s(x) + q2r1

Combining to form

.rz= s(x) + qz[~
= x6[q2] + s(x) [

one equation:

(a5X)(a5X +

+ qls(x)l
1 + qfqzl

1 = x6[a5x’+ alO]+ S(X) [110+2
= x5[a5x + afo] + S(X)[a X

Q’”)1

A(X) + X2tB(X)

+X+1]

Put in proper

S(X) [a10X2+ X
s(x) [C7(x)

form of S(x)a(x) =

-f-

+

●

02X2+0,X+1.

= 1 + x6[cy5x
= 1 + X6[Q5X

a’”l
~’”l

i- 1]

1

Therefore, the

Therefore, 01=1

ar(x) = XTO(X-’)

error-locator O(X)

and az=aloo

= x2(l+~-~+*f~~-2)a

a’”xz+x+l =

+ X + a10

——--——— ——.._____ ——.—..————___ —.— -—-
--()~– :$ISC-21834

Therefore, the error-locator polynomial reciprocal o,(X) = X2+X+a10
using the Euclidean greatest common divisor algorithm. Notice that
the same cY~(X)was correctly obtained as in section 4.3.1.1. Maybe
it is really possible to solve a set of NON-LINEAR equations for
the “correct” single solution!

4.3.2 Method 2: Linear Recursion Method for o(X)

The following is how we use the’linear recursion method to solve a
set of simultaneous linear equations for a~(X). The following
e~ation is derived in appendix D.

T-1‘
St = ;.- si+j.ToT.j for i = T+FCR,T+FCR+l,2t+FCR-l

This iS simply Si = Si-~a~+ sf-~+lo~-l+ ..O + s~-l~lfor i=T+FCR,
T+FCR+l ,...,2t+FCl-l.

Our non-erasure example has T = t~ S t unknown error s@ols to
solve for and FCR=l. In this example, t=3 error symbols so TS3
error s~ols.

First, we assume that T=O errors have occurred. For our example,
T>O errors because at least one S! was nonzero.

Next, we assume that T=l errors have occurred. We then obtain the
following set of e~ations from the previous general form:

i‘i = j=~ ‘i+j.lal.j = Si-l”l for i = T+l,T+2,2t

When these equations are completely written out they look like
this: S2.= Slol, S3 = S2a1, Sb = S301, S5 = Sbol, and S6 = S5CY1. We
notice that these equations are insoluble and therefore T>l. For
example, if Sz = S o = a“al = a“, then al = a“;

dd
but this cannot be

since Sz = s~~l= aa = a“ # as.

Since T=O and then T=l did not solve the equations, then try T=2.
This results in trying to solve the following set of equations:

= kg si+j.202. jSi - for i = 3,4,5,6

— ——... ______________
–(,() - ‘\Isc:-2183-f

These set of equations result when T=2.

S102+ S2(Y1= S3
S2(Y2+ S301= S4
S30*+ S401= S5
S402+ S501= S6

It turns out that it is possible to pick any T=2 equations to solve
for the T=2 unknown Ot values. Let us just pick the first two
equations from the preceding set of equations.

<

S102+ S201= S3
S*CY2+ S301= S4

To detetiine whether T=2 errors have occurred, we can at this point
simply ~alculate the determinant of these T=2 equations. If the
determinant is non-zero, then T=2 errors have occurred.
we should continue this process for increasing T until

Check for
magnitude

Next, we
section 4.

02 + 01 =
02 + asol=

Now check

a non-zero determinant of lSol~; DET
called the determinant.

substitute the syndrome components
2.1 to obtain the following results.

as
1

for a non-zero determinant of lSa12.

otherwise,

ISo IT is a scalar

Sf values from

The detefiinant is not equal to zero so therefore T=2 ‘error
s~ols. Remember that in a non-erasure example TSt. Now solve
for the values of o~ for i = 1,2,....T = 1,2.

I as 1
DET 1 (25I a10 + 1 as

‘2 = = == a-s = a10
DET IS012 alo ~lo

— —. ——.—.—
-70- riIsc-21[;34

We can construct the error-locator or its reciprocal at this point.
The reciprocal of o(X) is shown below.

with aO = 1

or(x) = Xz+x+a’”~z + CTlx+ ~z =

Therefore, the error-locator polynomial reciprocal o,(X) = X2+X+a10
and T=2 errors have occurred. again we receive the same results as
in sections 4.3.1.1 and 4.3.1.2. See appendix B for a hardware
design using Si to determine aj.

.

4.4 ERROR LOCATIONS Xi

We find the error locations x~ by first finding the error-locator
numbers z{. The Zf are the roots of a~(X) or are the inverse of the
roots of a(X). a(X) is as easy to determine as a~(X); once one is
determined, the other is also determined. I prefer to use a~(X)
instead of o(X) for two reasons: The first is to demonstrate that
there is usually more than one way to solve a problem; some
solutions are more easily applied and/or implemented and/or
calculated than others. We must always be on the alert for better
ways to do the same thing. The second is that a~(X) is more
clearly defined from the error locations (see appendix D).

There are two equivalent algorithms to find the error locations Xi.
They are the Chien search and explicit factorization. They both
find the roots in the error-locator.

4.4.1 Method 1: Chien Search
.

The following is how we perform what is commonly called the Chien
search. The Chien search calculates the outputs for all the
possible inputs; it is a very simple, brute force, search
algorithm. The Chien search detemines the roots of either the
error-locator polynomial or of its reciprocal. The roots of the
reciprocal of the error-locator polynomial a~(X) are the
error-locator numbers Zio

ar(X) ==fT (x + Zi)
i=l

Find t:he roots of

for zi in

Or(x) ,

the form of aj

i.e.t detemine a~(X)=O for

__———.——.—..-——. — —.
--”?1- N;SC-21834

ar(x) = x2+x+cr’0

Ur(l) =

or(a) =
a~(a2) =
c7~(a3) =
a~(a4) =
u~(as) =
a~(a6) =
a~(a’) =
a~(aa) =

(1)2

(a)2
(a2)2
a6 +
a8 +
~lo +
a12 +

~14 +

a+

+ (1) +

+ (a) +
+ (az) +
a12 = a4

a2=l

1 as
a7 ~ a2
a& = aa
a = o

*lo

alo

alo

1
a2
a4

+

+

+

as
a8
a4

alo

1
0

The two’ error-locator (or error-location) numbers are z1=a2 and
z,=a8. ‘It does not matter how the z, for i = 1,2,2t are
a~signed to the roots of a~(X). I ‘prefer lower indices to
correspond to the lower,locatlons in consecutive order and higher
indices to higher locations, e.g., I prefer zl=az and Z2=Q8 over
zl=aa and zZ=a2.

The error locations xi are defined from the error-locator numbers
Zi as Xi = xA((log=zf)/G)* Since in our example aG=a’, then

‘1 = xA((log=z,)/G) = XA((logaa2)/1) = XA(2/1) = XA(2) = X2 and

‘2 = XA((logaz2)/G) = X8.

Since a~(X) in this example is a polynomial of degree two, it has
two and only two unique roots [e.g., X2+X+a10 = (X+a2) (X+a8) because
ar(a2)=ar(a8)=O] . Therefore, there is no need to solve for the
remaining roots; all roots have been found at this point. However,
for the sake of completing the Chien search, the calculations for
the remaining roots are computed.

c7r(a9)
Or(a’o)
~r(a”)
or(a’2)
or(af3)
ur(a’4)

Notice

&a
as
a
a
az
*4

that oF(0)=oF(a-m)is never calculated because there are only
n = 2m-1 locations ‘ina primitive code. The locations are denoted
XO=l, X1=X, X2, X3,....X1-1= 1, X, X2, X3,....X1.1:in this e~alnPle,
there is no X-o=O=null position.

From section 4.2 the received word is repeated with
locations underlined from how we designed our example.
locations were also able to be determined by the Chien

the error
These same
search.

—— .——— .—..—.——— ———.——. —-.——- .—.
--7;-. !lisc-2183.4

x8+~11x7 + Q8x5+a10x4+a4x3+a3~2+a8x+a12R(X) = _ —
I I
Error location Error location determined
determined by the by the Chien search
Chien search

This section’s Chien search results of X1=X2 and X2=X8 checks with
the code word and the received word from section 4.2.

d

4.4.2 Method 2: Ex~licit Factorization

The basic idea here is to change variables in a(X) or fJ~(X)so as
to change o(X) or a~(X) into a ~tstandardttform whose factorization
is stofed in a look up table. These techniques work well for low
values of t. In fact, this may even be faster than the Chien
search for low values of t. More information that discusses
techniques of variable ’substitution to simplify polynomials can be
found in coding and mathematics literature.

4.5 ERROR VALUES Yf

There are two methods
solution and the error

that I will present here:
evaluator polynomial method.

the direct

4.5.1 Method 1: Direct Solution

Since T, x!, and S{ are known, we can solve the set of simultaneous
linear equations for yf. The following equation is repeated from
Section 4.3. Reducing the following set of simultaneous NON-LINEAR
equations, into a LINEAR set, the error values y! can then be
determined.

‘i = ;1 Yjzji

For our (15,9)

where i = FCR,FCR+l,2t+FCR-l and
where T for a non-erasure example is
the number of errors t~ S t.

(equatfOn 4.3-1)

RS code example, these weighted power-sum symmetric

2
Si = X yjZji

j=l

functions reduce to:

where i=l,2,
T=t~=2 s t=3
in Section 4

....6 and where
aS determined
.3.

Use equation 4.3-1 to non-linearconstruct the following set of 2t
equations:

Yl(zl)
Yl(zl)z
Y1(Z;)3

+

+

+

+

+

+

Y2(Z2)
Y2(Z2)2
Y2(Z2)3
Y2(Z2)4
Y2(Z2)5
Y2(Z2)6

‘1
S2
S3
S4
S5
s6

of

Y1(Z1)4
Y1(Z1)5

Y1(Z1)6

We only these equations since we have T=2 unknowns
equations; I will pick two(i.e., y, and y2). Pick two the first

since they look-the easiest:
.

Y,(z,) * Y2(Z2) = SI
Y1(Z1)2 + Y2(Z2)2 = S2

Substitute z1=a2 and Z2=CY8
following linear set.

to preceding set into the

Yl(a2) + y2(a8) = 1
Y,(a2)2+ y2(a8)2= 1

This simplifies to:

y,a2 + y2a8= 1
+ y2cY = 1

use the standard

I a2(.Y8
IYI = DET a4 a

y~a4

Now

DET

coefficients.Cramerts rule

a12 =

to

Qlo

for

1

the (

I =a3+

IIa8 1

DET a 1 a8+a alo

a“

a“

Y1

Y2

I

aloDET IYI ~lo

a2 + a4II
a2 1

DET a4 1 alo

DET IYI alo alo

Therefore, Yl=l and Y2=1. The first and second error values yl and
Y2 just so happen to be the same; y1=y2=ao=l. It should als-o be
noted that Yi = I,a,az an-l

t“”et are all valid error values Y!“
Notice that these error values check with the discussion of the
symbols in error within section 4.2. We got the correct decoding

—————
--J-l- RISC-21834

4.5.2.2 Hardware Error Evaluator Polynomial

This section describes an algorithm which is sometimes used in
implementations.

T-1

~0 ‘T-jai, j

for i=l,2,Tand ,Yi =
for i#j in the denominator

h‘i j=l
(ZI + Zj)

h-’ (X+zj)
j=O

for i#jWhere ui,~is defined by:

*************** OR ****************
T-1

~0 ai,jx
T-l-j for i can= j

Solving for y,:

S201~ + Sl=l,l#
v. =

21(Z1 + 22)

+ 22 =~x+O,,J: x ~l,ox + Ul,lZ2

Therefore, Ul,o=land 01,1=Z2=CY8.Now
the preceding y, e~ation.

C?l,o=sl=S2=1 and al,=a8Dsubstitute

a2

into

Y1 =
(1) (1) + (1) ((Y*) l+a8

-— = a“I

~z(az + a8) a4+ a10 a2

Solving for y2:

S2e2 ~ + sl~z,l#
v. =

‘l,J: X+zl

Therefore, 02,0=1and 02,1=z1=a2.

(1) (1) + (1) (a2) l+a*

Y2 = =
Qa(aa + az) a + a10

(Y8
= a“

Therefore, yl==land y2=l.

—— —..— ...——-——
(-—’l’)— 31SC-21S34

Notice that we obtained the same error values Yi as in the first
description of the direct method (sections 4.5.1 and 4.2).

Another possible solution for the Y~ is to SOIVe the Yi and ~i,j
equations for T=3 and then let ZT=O to receive the case of T=2.
Doing so will result i.nthe following:

S3 + Z2S2 as+ (aa)(l) as+ a8
Y1 = = =

212(Z1+ 22) Q4(a2 + aa) a4

S3 + Z1S2 a5 + (a2)(l) a5 + a2
Y2 = = =

22*(21+ Z*) a(az + a8) a
.

Theref~e, yl=l and y2=l.

Still we obtain the same error values y; (see

a4
= a“=l

a4 =

a
=— = a“=l

a

sections 4.2, 4.5.1,
4.5.2.1, and the first’part of this sec”tion).

4.6 DECODED CODE WORD C(X) t

NOW since we have already calculated all our error locations X~ and
error values yil we have just finished constructing our estimate of
the error E(X) 1 which is simply the estimate of the noise.

E(X) S = ~1 Yfxf = y,x, + Y2X2 = (1) (X2) + (1) (X8) = X2 + X8 = X8 + X2

Notice that since y1=y2=...=y~=l within the main (15,9) RS example
for our particular R(X), E(X) S just so happened to be a binary
polynomial. yi = l,a,a2,an-’ and thus E(X)’ is always a
polynomial with code symbol coefficients.

The received vector is a function of c(x) and E(X) ;
R(X) = C(X) + E(X). Since the decoder only has the received vector
R(X) and since it can calculate our estimate of the error E(X)’,
the closest code word C(X)! can be determined as a function of R(X)
and E(X) ‘.

c(x) $ = R(X) - E(X)t = R(X) + E(X)’

Therefore, we find our closest code word by adding (e~ival~~nt to
mod-2 subtracting) our estimate of the noise to the received block
of data.

— —— —- .—
-77- 31SC-2183-1

c(x) ‘ = R(X) + E(X)t
= [X8+a”X7 + a8X5+a’0X4+a4X3+ a3X2+a8X+a12] + [X8 + X2]
= (1+1) X8+a” X7 + (y8X5+a’0x4+a4x3+[a3+l) X2+a8X+a’2
= a“X7 + a8X5+a’0X4+a4X3 +a’4X2+a8X+a’2

C(X) 1 is indeed the same as C(X) in this example!!!

c(x) 1 = a“X7 + a8X5+a’0X4+a4X3+a’4X2+a8X+a’2

From Section 4.2 the following code word was transmitted.*

c(x) = a“X7 + a8X5+a’0ti+a4X3+a’4X2+a8X+a’2. Therefore, C(X) l=C(X) as
expected!

Now stri’pthe message field from the corrected data.

M(X)t = C~-llXk-l+ Cn-21Xk-2+ ... + Cn-k+llx+ c~-kl

= al’x .

The message M(X) transmitted systematically within the code word
C(X) is M(X) = a“X. Therefore, M(X) ~=M(X) as expected.

Now strip the check field from the corrected data.

CK(X) ~ = C~.k-l‘Xn-k-l+ C~-k-2QXn-k-2+ ... + ClIX + CO~
= a8X5+a’oti+a4X3+a’&X2+a8X+a’2

The check CK(X) transmitted systematically within the code word
C(X) is CK(X) = a8X5+a’0fi+a4X3+a’4X2+a8X+a’2. Therefore, CK(X) ‘=CK(X)
as expected.

Notice that since there was definitely T<t actual error s~ols,
our decoding process actually picked the same code word that was
transmitted. The message M(X)t is then systematically extracted
from the decoded code word C(X)t. The parity-check CK(X) 1 can also
be systematically extracted if needed. In many application-s the
decoded parity-check CK(X) * is usually thrown away or is not even
determined! Who needs it? Maybe someone might need the received
(or played back) word R(X) , but who needs CK(X) ‘? The C(X)f
results demonstrate the correct decoding of a Reed-Solomon code.
It works! It really works!

4.7 SUMMARY

In chapter 4 our RS code is demonstrated to be able to be decoded.
This is because we are able to take our original message

— ..——
—78— flIs(:-21t;3.4

symbols M(X) , append parity-check symbols CK(X) to it, send it,
corrupt it with errors E(X), receive it as R(X) , and then decode .
R(X) back into our original M(X) if TSt. We were able to
demonstrate a simple example of a mk = 36 bit message (i.e., the
binary se~ence ttOOOOOOOOOOOOOOOOOOOOOOOOOOOOlllOOOOO1l), encc]dethe
message by systematically adding redundancy to develop a mn = 60
bit codeword (i.e., the binary sequence “0000000000000000000000000
OOO1llOOOOOOIOIOlllOOlllOOIOIOllllli~), transmit (or recorc~) it,
allow errors to corrupt it, receive (or play back) it as a mn = 60
bit received word (i.e., the binary se~ence “000000000000000000000
OOOOOO1lllOOOOOO1O1O1llOO1llOOO’OIOllllltf), and finally to decode
the received word back to the exact original 36 bit message. This
(15,9) RS example could correct a maximum of 3 code symbols out of
15 code symbols; this code can withstand a maximum symbol error
rate SE~X (or simply block correction BC=t/n) of t\n = 20%. It is
e~ivaient (but awkward) to indicate that this (15,9) RS example
could correct up to a maximum of any where between 3 and 12 bits
out of 60 bits dependivg where the bit errors occur. Usually this
code is said to be able to withstand a SER = 20%.

If we feel good aboutthe RS coding operations so far, then let us

move onto chapter 5. Otherwise, we should reread the previous
chapters. This coding stuff is fun!

.————..—.-———.—.— -—
._:()__ l\isc-21:13.f

CHAPTER 5
SYMBOL ERASING AND REED-SOLOMON CODING

We should now know the Reed-Solomon encoding and decoding
operations which were presented in the previous chapters. Knowing
this, let us continue and instead of assuming hard decision at the
decoder, let us assume soft decision. If we have the soft decision
capability, we can come up with an algorithm to pick a few of the
worst quality symbols within each block length as the ones which
might be in error. Since we have such flags in many systems (i.e.,
E~ levels, signal format violations, etc.) soft decision is c~ite
possible. Also as n increases, it becomes easier to correctly
determine at least some of these highly likely error symbols. By
somewhat knowing some of the error locations through soft decision
capabilities, the decoder can now work on not only T<t errors, but
also T>t errors ! The overall error correction capability
increases !

.

A correctly designeddecoder using soft decision (e.g., using the
s@ol erasing capability of RS codes) should yield better
performance than running the data only through a RS decoder without
soft decision.

THE DECODING PROCESS USING SYMBOL E~SING IS A THREE-STEP PROCESS:

10 Calculate the syndrome components and the modified
syndrome components.

2. Calculate the error-locator word for the error locations.

3. Determine the decoded error pattern and correct the
errors i.nthe received word.

5.1 RS CODING USING SYMBOL ERASU~

If the demodulator within the coding system flags certain received
code symbols Ri as unreliable, then these s~ols are treated as
erasure symbols; ~~ EWSURE SYMBOL IS DEFINED AS ~~ ERROR SYMBOL
whose erasure location xi“ is known to a high degree of probability
from the demodulator (and therefore the corresponding erasure ‘value
Y!” is known to a low degree of probability from the demodulator) .
If we accidentally flag an error-free symtbolas being an erasure
s@ol, the soft decision process can still decode properly! We
can pass any erasure s@ool Rit’ to the decoder and the soft
decision process can also still decode properly! S@Ol erasing is

.——.. ——-——-—- ...—...—.— ———..—— —————..—.._____
:()- :iisc-21834

NOT deleting symbols, but rather erasing them. Symbol erasing is
erasing some received symbols NOT the entire received word. Symbol
erasing can be, but is usually not, working within the gray zone.
It is possible to increase the SNR a little by NOT necessarily
resetting the erasure symbol Rillto zero! THIS CHAPTER ASSUMES
THAT THE DEMODULATOR PASSES WHATEVER ITS BEST ESTIMATE OF THE
RECEIVED SYMBOL VALUES ARE TO THE RS DECODER.

The reason why the symbol erasing issue may be important is that
the power of the error correcting code increases. The upper limit
of T=2t error s~ols can be ‘reached if all 2t errors can be
flagged as erasures. However, there are a few drawbacks. First of
all, correcting erasures requires many times the computational
capability. Secondly, in some systems the accuracy of the
demodulator to correctly determine the erasure status may be too
low for-substantial increased system error correction; in fact, if
it is poorly designed, it may even decrease the system’s error
correction capability. .

A coding system which corrects erasures can correct up to tp errors
and t~fterasures if 2t~+t~1tS d-1 where the distance d S d~i~. For
RS codes, we can correct all t= errors and all t=tterasures if
2t~+t~1*S d~\n-1 or rather 2t~+t~c~‘S 2t.

G

For a (15,9) RS code: & (errors) t.‘t[erasures)

o 6,5,4,3,2,1, or O
1 4,3,2,1, or O
2 2,1, or O
3 0

To explain how the
erasure, assume the
being unreliable.

RS code can correct T>t error symbols using
demodulator flagged the X7 and X2 locations as
Therefore, by the demodulators particular

algorithm and symbol quality data, it has decided that thes[~were
erasure s~ols; the X7 and X2 locations are considered .to be
erasures. In our previous (15,9) RS example which has T=2 error
s@ols at the X8 and the X2 locations, the RS code, b[zsides
correcting the two errors, could have corrected an additional
t~rlS d-2t~ = 2 erasures. Assume a similar case as in the previous
(15,9) RS example, but with two erasures at the X7 and the
X2 locations with two errors at the X8 and the X1=X locations.
Remember that ERASU~S ARE ERRORS v:hose erasure locations e.re
probably known for sure and whose erasure values are probab;lynot
known.

Let the same message and thus the same
chapters 1,2,3, and 4. The following
example:

co~e word be
is our (15,9)

sent as in
RS e:rasure

————.. .—— . .- ..———.
-sl– ;\ls(;-21fi3i

M(X) = all
c(x) = a“X7 + a8X5+a’0X4+a4X3+a’4X2+a8X+a’2

Assume more than t errors were injected into the code word, i.e.,
assume T>t. A system without symbol erasing capability would not
be able to correct the received word because T>t (except for a few
rare complete decoding cases) . Usually, there is only a high
probability of error detection. Now assume the input to the
demodulator to be some type of modulated ‘tchannelSymbols’$ which
represent the following:

I I
very ueakand noisy “channel S*[SII

The outpqt of the demodulator is equivalent to the input with some
or all o_fthe poor quality locations flagged as erasures. Also,
the demodulator should pass its best guess of the value at each
lo~ation because sometimes it may guess correctly. In other words,
the following is given:

R(x)$t = x8+a7x7 + a8x5+a10x4+a4x3+a3x2+a9x+a12

LSURES(mreliable cde S*1S \

After R(X)f~is processed by the RS decoder with erasure capability,
the following code word should result:

c(x)~t = a“X7 + a8X5+a’0#+a4X3+a’4X2+a8X+a’2 = C(X)

In summary, since C(X)tlcan equal C(X), it is possible to correct
T>t error symbols if some of the poor quality locations can be
determined to be erasures. In fact, if all the actual error
locations are known, thus all the errors are erasures, the code can
correct up to a maximum of T=2t error symbols. This particular
example with four errors (two errors plus two erasures) will be
completely decoded in sections 5.2 and 5.3; T=4>t=3 in our
(15,9) RS ‘example.

The following figure and table illustrate the architectural
differences between a RS coding system with and without erasure;
also see figures 3.1-1 and 4.1-1 and tables 3.1-1 and 4.1-1.

.

k
M(X)—/~

,

k
> m /—>

u
1 1

“~ D

>d n-k
:Xn-k –/–> t i />

v CK(X) is d
●

the
n-k+l : remainder >

g(X)—/—> e

REED-SOLOMON ENCODER

NOISE

c(x)—>
modulator
OR
writing
unit

R(X)1~—>

~ifl—>

.
—>

channel
OR
storage
unit

—>
demodulator
OR
reading
unit

c(x) ‘1

-,~~D’ :
REED-SOLOMON DECODER

(WITH ERASU~ CAPABILITY)

—;—> c(x)

—;—> R(X)”

tE!l

—/—> ~.111

k
—/—> M(X)1’

n-k
—/—> CK (X)‘r
(op~{onal)

Figure 5’.1-1.- RS coding block diagram with erasure capab-ility.

—— .—-—-..-——.—- .—— ————-—.-. —- .—.
--s3-- :\rsc-21:;34

TABLE 501-1. - RS SYMBOL ERASURE POLYNOMIAL DEFINITIONS

received word R(X)ll in an erasure system consisting of received
s@oIS Ri’f:
R(X)‘t= C(X) + E(X)

= [(cn.l+En.l)x ‘-1 + (Cn-z+E~-z)X“-2+ ... + (C1+E1)X + (CO+EO)]

= R~-lllX”-l+ R ~~xn-z+ .,. + R1ttX+ ~ltn-2

erasure positions xfst:
Xffr= Xl for i = 1,2,....tEtrAND for j defined from the

demodulator where t~ = number of errors, t~!t= nufier
of erasures, and 2t~+t~ttS 2t.

decoded ,error pattern E(X)tt in an erasure system consisting of
error lgcations xi (which can include erasure locations Xitt)and
error values yl (which can include erasure values yii’):
E(X)~~= Y,x,+ Y2X2 + ‘O” + Y~x~

decoded code word C(X)il in an erasure system consisting of code
word S@OIS Cit’:

R(X)” : E(X)tf
R(X)tt+ E(X)tt
Xn-kM(X)tt+ CK(X)Ot
Xn-kM(X)’l+ X“-kM(X)”mod g(X)
c trxn-1+ c ttxn-2+ ... + CIIJX + co”
n-1 n-2

decoded message (or data or information) M(X)t~in an erasure system
consisting of message symbols Mitl:
M(X)tl= Cn-l~IXk-l+ CnzsSXk-2+ ... + Cnk+l~;X+ Cn~li. .

= Mk-lIlxk-l+ M k-z+ ... + M1;lXkezttx + MOtI

decoded parity-check CK(X)tOconsist
CK(X)11= Cn-k-ltlXn-k-l+ C~-k-211Xn-k-2+0

= -c~.k.l”xn-k-l+ CKnkzt~xn-k”z+0-.

●

ing
● *+
● *+

of check symbols
CIIIX+ Cott

CK1‘IX+ C~~t

CKill:

5.2 RS ENCODING USING SYMBOL ERASURE

The encoding procedure for RS codes using erasure is identical to
RS codes without using erasure (see chapter 3). This is due to ths
fact that symbol erasure is soft decision, but only at the

demodulator and decoder and not the modulator and encoder. Bec:ause
of this and the discussion in section 5.1, the message and code
word are M(X) = a“X and C(X) = a11X7+ a8X5+af0#+a4X3+a14X2+a8X+a’2.

— .—.—...——.——_._. -..— ——.—.
_$.~-. !IS-C-21}{34

5.3 RS DECODING USING SYMBOL ERASURE

In order to demonstrate the i,ncreasein error correction by using
symbol erasure, the decoding operations are demonstrated for the
(15,9) RS code example as discussed earlier in sections 5.1 and
5.2. In the following sections within 5.3, all the decoding
operations for the received word R(X)t~= X8+a7X7+ a8X5+a10XL+a4Xs+asXz
+apX+a12will be shown. For learning purposes, R(X)ccwas maclevery
similar to the R(X) for the nonerasure (15,9) RS.example found in
chapters 3 and 4 and appendix C; R (x)ear[ier_exa~le = X8+Q11X7 + (ygxs
+Q10X4+a4X3+a3X2+a8X+a12.

THE DECODING PROCESS USING

1.

2.

3.

4.

5.

6.

Calculate the 2t
word.

s

SYMBOL E~SURE IS A SIX-STAGE PROCESS:

syndrome components from the received

Calculate the 2t-t~t~modified syndrome components from
the syndrome’components and the erasure locations.

Calculate the t~ error-locator coefficients from the
modified syndrome components.

Calculate the t~ error locations from the error-locator
numbers which are from the error-locator word.

Calculate the T=t~+t~S~error values and erasure values
from the error-locator numbers and the erasure-locator
numbers.

Calculate the decoded code word from the received word,
the error and erasure locations, and the error and
erasure values.

.
5.3.1 Erasure Determination --

Assume the received word has the errors and the erasures as
presented in sections 5.1, 5.2, and 5.3. The summarized results
are placed in table 5.3.1-1.

TABLE 5.3.1-1. - CODE WORD C(X) USED IN (15,9) RS ERASURE EXAMPLE

Code Received Received
word word word

Location Sy-mbol s@ol symbol Erasure capability
J;L df. — ——R{ Rf’t (without —> with)

X8 o 1 1 error —> errorX7 *11 ? ?=a7 error —> erasure
X2 a14 ? ?=a3 error —> erasure
x aa a9 ‘ a9 error —> error

So therefore assume our new received word has two errors and two
erasures.

R(x)tf = ~8+a7x7 + Q8x5+a10x4+a4x3+a3x2+a9x+a12——
II

, ——

I
I IERASURE I ERROR

ERROR ERASURE

Because we are now handling two ~~errors~tand two ‘lerasures,~tthe
code is actually correcting T = tE+t~tl=4 error symbols greater than
t=3 error symbols, but less than, or e~al to, 2t=6 error symbols!
Do not confuse T = t~+tE1tand 2tE+tE1f5 2t with TS2t; T can equal 2t
when t~=O.

5.3.2 Syndrome Components Sf

The first stage is to calculate the syndrome com~onents s :- For
our example, FCR=l and aG=a’. R(x)$~ = ‘x8+a7x7 + a8~5+alo~+a4~3+a3x2+m a-
ayX+a’d.

S3 = R(a3)tt= all
S4 = R(a4)1~= ~lz

S5 = R(a5)tl= al~
S6 = R(a6)!~= alG

Since not all the Sf are zero, then we know that T=t~+t~t’>O.

5.3.3 ifod~fied Svnd~oirteComponents Si~

The second stage is to calculate the modified syndrome components
Sit! from the syndrome components s and the erasure-locatori
coefficients ojtf:

— . . .-— -.. —._-_.__. —— .—
–~fi--. —.

NIsc-21f;34

tEll

silt
= ~. OjloSf-j for i = t~~l+FCR,t~’~+FCR+l,....2t+FCR-1

From the demodulator, x1~~=X2(or z1~~=a2because cyG=al)and X2~l=X7(or
zz11=a7because aG=al), therefore, t~~t=2erasures are given. Since we
are goin9 to use t~t1=2 erasures for this example, hopefully
t~S2 errors; t~ 5 (2t-tE’’)/2. If we later determine that
t~>2 errors, then we can decrease our t~ff;e.g., if t~=3, then
t~IfS2(t-t~)which for this example would be t~ft=O.

It does not matter how the l~cations are assigned to the Xflt.
However, I prefer lower locations to correspond to lower indices
and higher locations to higher ones (i.e., X1tf=X2and X2t~=X7not
x11t=X7and x2t0=X2). The reciprocal of the erasure-locator polynomial
a~(X)lf-isdefined as having the erasure-locator numbers z~” as its
roots:

C7r(x)fc= (x + 2“)(X + Z2JI)
= (X + a3)(x + a7)
= X2 + a12x + a9

Therefore, a~(x)lt = X2+a12X+a9 and so e11!=a12and e21!=a9because
a(x)” = (J2’’X2+01’’X+1.Since aOt~=oOis defined to be 1 and therefore,
the Oi?tis defined for i=0,1,2,t~tJ.we finally detemine the
modified syndrome components Sin.

fOr i = 3,4,5,6

Substituting values:

S311
= S~ + (7111S2 + (721fs1 = all + Q12Q4+ a9a13= all + a + a? = ~lQ

s4ft = S4 + c71trS3 + a2rrs2 = a10
s5tf = s~ + ~lffs~+ ~zrrs~ = a8
s6tf

= s~ + ~ltfs~+ ~2r1s~ = a7

5.3.4 Error-Locator Coefficients af

The third stage is to calculate the error-locator polynomial a(x)
from the modified syndrome components. For instructional purposes

—- —.. __________ .. ___-~ -——_______ _
_~].. :kfsc-21s34

we set up our example for t~=2.

for i = T+FCR,T+FCR+l,2t+FCl-l

s4”a1 = s51t

s51fcJ1= s6’~ s

Substitution of values is shown below:

Therefore, ol=a10and u2=a9and so O(X) = agxz+alox+lt

5.3.5 ~rror Locations x{

The fourth stage is to calculate the error locations x! using the
roots of the reciprocal of the error-locator polynomial a~(X).
Determine the error-locator numbers Zt from a~(x) = X2+a10X+a9.

Or(l)
or(a)
a~(a2)
ar(a3)
or(a4)
or(as)
f7r(ab)
ar(cY7)
or (a8)

CZ6
o
a5
a7
a5
a6
~lo

alo
.

0

Therefore, zl=a and Z2=Q8. Since aG=a’ in our example, the
corresponding error-locations x1 and Xz are simply X and X8.

5.3.6 Error Values V!

The fifth stage is to calculate the error values y~. At this point
there is no need to make a distinction between errors and erasures.
Therefore, rearrange the indices such that the lower o~Qs
correspond to the lower locations. EEFO.W : T=t~+t~t’==4errors and

—— .—— —— .—
–tis.-

——
lfi:;c-21834

Y/,●

Sf =

The

erasures, ~1tI=a2,~211=a7,~,=a, and z2=a8 (and X1tf=X2,xzf~=X7,X1=X, and
XZ=XS), and y,11,Yztt,y,, and y2. AFTER : T=4 errors, zl=a, z2=a2,
‘3=a7~ and zb=aa (and X1=X, XZ=X2,X3=X7,and XA=X8), and y,, Y2, y~, and

error (including erasure) values.Now solve for the

~1Yjzjf for i = FCR ,FCR+l ,...,T+FC1-1 = 1,2,T

following are the
simultaneous equations:

Ylzl + Y2Z2 + Y3Z3 + Y4Z4
Y1Z12+ Y2Z22+ y3z32+ y4z42
Y1Z13+ y2z23+ y3z33+ y4z43
y,z14+-y2z24+ y3z34+ y4z44

Substituting values, the
simultaneous equations::

Qyl + a2y2 + a7y3
Q2yl + a4yz + a’4y3
a3y1 + a6y2 + a6y3
a4y1+ a~z + a’3y3

+ a8y4
+ ayb
+ a9y4
+ a2y4

Therefore, yl=a’2, y2=l,

set of the independent NON-LINEAR

s,
S2

‘3
S4

set becomes a set of independent LINEAR

a13

a4
all

*12.

y3=a8, and y4=l.

5.3.7 Decoded Code Word C(X)tt

The sixth and final stage is to
c(x) ‘l. The error locations x= and
and again in section 5.3.1;
x1 and
error
Using
as fol

X4 were determined in
va~ues Ylr Y2~ Y3/ and

‘X2=X2

construct the
x. were determi—

decoded code word
ned in section 5.1

and XX=X7. The error locations
section 5.3~5; X1=X and X4=X8. All the
y’ were detemined in section._5.3.6.

erasure, the-dec~ded err-orE(X)Ctis simply the xl and the y~
.

lows :

E(X)11= :1 Yfx{

E(X)‘:= Yxl + Y2X2 + Y3X3 + Y4X4
1= a 2X + 1X2 + a8X7+ 1x8

= X8+a8X7+ X2+a12X

-.
1—~c_ r\Isc-2133-j

The decoded

c(x)“ = R(X)

code word

l+Et(X)’

using erasure is:

= [X8+a7X7 + a8X5+a’0X4+a4X3+a3X2+a9 X+a’2]
+ [X8+a8x7 + X2+a’2XJ

= *+~a7+~ ~
12) x+a128 X7 + ~8X5+a10X4+(y4X3+ [Q3+l) X2+(a9+a

Therefore, C(X)~~ = allXT + a8X5+a’oti+a4X3+a’4X2+a8X+a’2. From
section 3.3.2 or sections 5.1 or 5.2, C(X) = a“X7 + a8X5+a10X4+a4X3+
a14X2+a8X+a12. Therefore, C(X)tt=C(X)as expected!

*

Strip the message field from the corrected data. Therefore,
M(X)tt= C~-lllXk-l+C~21tXk-2+...+C~~+1~IX+C~k~?= allX. From sections 3.3.2. . .
or 5.1 or 5.2, M(X) = allX. Therefore, M(X)C1=M(X) as expected.

\

Strip the parity-check field from the corrected data. Therefore,
CK(X)ll = Cn-k-lttXn-k-’+Cn-k-211Xn-k-2+...+C1ttX+Coll = a8X5+a’oX4+a4X3+a’4x2+a8x+
a120 From sections 303.~ or 5.1, CK(X) = a8X5+a10Xb+a4X3+a14X2+a8X+a12.
Therefore, CK(X)~t=CK(X) as expected.

Therefore, we correctly decoded our (15,9) RS example with T>t
error symbols using erasure capability! In fact, we pushed T to
the maximum error correction capability of an erasure system for a
particular value of t~. If t~ were a smaller value, then we could
have somehow picked more erasures (even if the demodulator was so
called happy enough) ; thi

7
should also increase the SNR slightly.

If t~ were a larger value, then we would have to pick fewer
erasures.

5.3.8 Deteminin~ t. in a Symbol Erasure System

For instructional and clarity purposes, the preceding sections
ASSWD t~=2. In this section, we will again learn how the decoder
can determine the value of t~ using MLD. .—

In our example worked in the preceding sections, the decoder was
given t~=2. In real life the decoder must determine t~ using MLD.
It first assumes that t~=O. If t~=O does not work, then it tries
tE=l. It keeps increasing t~ (tE<t) until it can solve the
equations to determine the value of t~.

Let us now complete the work on the (15,9) RS erasure example. One
of the ways to determine t~ is to first determine T. We could
calculate the 2t syndrome components and then detemine an
error-lccator polynomial using Berlekampts iterative algorithm.
For our example with T<t, we obtain o(X) = a’”X3+a7X2+a6X+l. This is
a third degree polynomial and only has one root, i.e., u(a6)=0 or

Q6is the only root. Therefore, since there should be three roots
and only one GF(16) root exists for this t=3 degree polynomial,
T>t. Since T>t then t~+t~tc>tand therefore t~>t-t~~tor t~>l
(assuming all the erasures are non-error-free symbols). Then we
can proceed and try t~=2 and work the problem as shown in
sections 5.3.4, 5.3.5, 5.3.6, and 5.3.7.

Another way to determine t~ is to first assume t~=O. If t~=O, then
T=t~+t~1f=2locations, and thus o(X)=O; we do not need to complete
the second, third, and fourth stages. We need to determine the
erasure values y,” and yz‘1which at this point we simply denote as
the error values y, and yz. We solve for the error values as shown
in section 5.3.6 and this results in the following set of
equations:

.
Ylzl + Y2Z2 = S1

Y1Z12 + Y2Z22 = S2
Y1Z13+ Y2Z23 = S3
Ylzl4 +.y2z24= S4

Ylzl5 + y2z25= S5

Ylzl 6 + y~226 = sb

We choose any T=2 equations to solve for the T=2 unknown yi.

Ylzl + Y2Z2 = S1

Ylzlz + Y2Z22 = S2

Therefore, yl=ag and y2=a12 with z1=z1tt=a2 (X1=X1 “=X2), z2=z2’’=a?
(X2=X2‘t=X7),S1=a13, and S2=cr4. We then form our decoded error

= agxz + Q12X7*pattern E(X)J’ = Ylxl + Y2X2 The decoded code word
c(x)‘1= R(X)tt+ E(X)??= X8+cr2X7+ a8X5+a’0#+a4X3+aX2+a9X+a’2,but this
is not a valid code word! It is not a valid code word because the
syndrome of C(X)t’ is NOT zero, e.g., the third syndrome component
of c(x)” = C(Q3)” # o. Therefore, t~>O errors occurred.

Next assume tE=l. Si’t= S{-ltfO1for i = 4,5,6. a1=S41’/S3t’which
should be the same as a1=s5~’/s4~’and ol=sAt/s5tt,but is not!
Therefore, t~>l.

Now we try t~=2 and work the problem as shown in sections 5.3.4,
5.3.5, 5.3.6, and 5.3.7.

We should note that if t~>2 in our erasure example, then we would
continue the lILDprocess for ~ncreas~ng values of tE (tE<t). In our
example, if we increase t~ past t~=2, then we would decrease t~ftby
two each time that we would increase t~ by one; 2t~+t~~~g2t.

— ——.— . .-——._ ——.
–:) 1 –

———

:\ISC-2183.{

5.4 SUMMARY

In chapter 5 the Reed-Solomon code with symbol erasure capability
was demonstrated to be working for T = t~+t~lS> t error symbols.
This is because we are able to take our original message M(X),
append check information CK(X) systematically to it, send it,

corrupt it with noise, receive it~ send it through our demodulator
with symbol erasure detection capability, and then decode the
received vector R(X) back into our original M(X). Of course,

symbol erasure systems can also correct TSt error symbols!
s

>

APPENDIX A
RS HARDWARE ENCODING DESIGN

This appendix will step us carefully through a common SRC
implementation to perform the RS encoding process. RS encoders are
usually implemented using a SRC.

A.1 (15,9) RS SHIFT REGISTER EN:ODER CIRCUIT

To develop a RS encoder, a SRC is usually used. Figure A.I-l shows
the SRC ‘for our (15,9) RS example where g(X) = XA+a10X5+a14X4+CYLX3
+a6X2+a9X+a6. other RS codes can be implemented in the same manner.
As in most, if not all, of encoder/decoder systems (codec systems) ,
the encoder is the easy part to understand and to apply into
hardware.

,

There are a few notes on the operation of the encoder circuit
within figure Al-l: When the switches are open, their outputs are
all pulled to zero. The exception is when the switch outputs are
the inputs to the output shift register; then, they are open
circuited.

Table Al-l presents the procedure necessary to operate the
(15,9) RS encoder which is shown in figure A.I-l. The figure after
figure Al-l, i.e., figure A.1-2, shows the blow up of the output
shift register.

TABLE Al-l. - (15,9) RS ENCODER PROCEDURE

Step 10 ,Clear feedback shift register [XO=X1=...=X21=0]O].
Step 2. Enable switch A and disable switch B.

--

Step 3. Clock the information s~ols into the circuit, most
significant s~ol first (clock k times) .

Step 4. Disable switch A and enable switch B.
Step 5. Clock the check symbols out of the circuit (clock n-k

additional tines) .
Step 6. The resultant code word is in the output shift register.
Step 7. GOTO either Step 1 or Step 2.

g(x) = x6+~10x5+a14x4+a4x3+a6x2+a9x+a6

MULT BY g1=a9

‘u T

> MULT BY go=a6
‘m’~l_>~,

>

>

>

> MULT BY g4=(r14
>W’l+l

1->* n--q+>X2

MULT BY g2=a6 >

, 1.-”> + >v X3

MULT BY g3=a4

L>[—l ,—1

●

‘> MULT BY g2t_1=g5=a10
>W’l+l

1 I

1- >

< w+r > S~iA2 > ‘m’
.

>L M(X)

Figure Al-l. (15,9) Rs shift

OUTPUT
SHIFT
REGISTER-”-
(1ss) (Xlss)

c(x) <—

register circuit.

.

1 x X2 X3 X4 Xs X6 X7 X8 X9 Xlo Xll X12 X13 X14
-

RS Parity-
<— Check Symbols —> < RS Data Symbols >

least significant symbol most significant s@ol

(last byte transmitted) (first byte transmitted)*

CCSDS BYTE O (zero) CCSDS BYTE N-1

(LSB) (MSB)
.

Figure A.1-2. - Blow up of the output shift register.

.

In an attempt to explain the different states of the hardware in
detail, tables A.1-2 and A.1-3 are given with message M(X) = allX.

Case

o
1

2
3
4
5
6
7
8
9
10
11
12
13
14
15

TABLE A.1-2. - FEEDBACK SHIFT REGISTER STATES

Feedback Shift Register
~o xl Xz X3 X4 Xs—

-- = --

Ma=O
MT=O
Mb=O
M5=0

“,M4 = 0
M3=0
M2=0
Ml = all

%
= o

-- =--
-. =--
-- =--
-. =--
-. =--

-- =--

--
X8
X7
X6
Xs

ti
X3

X2

x
1
--

--
--

--

--

-.

0
0
0
0
0
0
0
0
az
a12

0

0

0

0

0

0

0
0

0
0
0
0
0

0
as
a8
a12

0
0
0
0
0

0
0

0
0
0
0
0
0
az
a14

a8
a12

0

0

0

0

0
0
0
0
0
0
0
0
1
a4
a14

a8
~12

0
0
0

0 0
00

0 0
0 0
00
0 0--
00

0 0
a10 a6
a10 a8

a4 alo
a14 a4

a8 a14
a12 a8

o alz

o 0

_——-—.———-—.
.c)s 31SC-2183-I

.

Case.—

0
1

2
3
4
5
6
7
8
9
10
11
12
13
14
15

TABLE A.1-3. - OUTPUT SHIFT REGISTER STATES

< Output Shift Register >
lx ~2 X3 X4 ~5 X6 X7 X8 X9 Xlo Xll X12 ~13 ~14

--

0
0
0
0
0
0

0
all

0’
a8
~lo

ab
a14

a8
alz

It should

--

.-

0
0
0
0
0
0
0
all

0
a8
alo

a4
a14

a8

be

--

--

--

0
0
0
0
0
0
0
=11

0
a8
alo

a4
~14

--

--

--

--

0
0
0
0
0
0
0
all

0
a8
alo

a4

--

--

--

--

--

0
0
0
0
0
0
0

,a”
b
a8
alo

--

--

--

--

--

--

0
0
0
0
0
0
0
all

0
a8

the

--

--

--

--

--

7-

--

0
0
0
0
0
0
0
all

0

--

--

--

--

--

--

--

--

0
0
0
0
0
0
0
all

--

--

.-

--

--

--

--

--

--

0
0
0

0
0
0
0

--

--

--

--

--

--

--

--

--

-.

0
0

0
0
0
0

--

--

--

-.

--

--

--

--

--

0
0
0
0
0

--

--

--

--

--

--

--

--

--

--

--

--

0
0
0
0

--

--

--

--

--

--

--

--

--

--

--

--

--

0
0
0

-. -

-, -

-, -

-, -

-! -

-. -

--

--

--

--

.-

--

-.

--

0
0

noted that code word C(X) is the value in
output shift register during case n; in this example, n==15 so
c(x) = a“X7+a8X5+a’0ti+a4X3+a’4X2+a8X+a’2. This checks with the earlier

--

--

--

--

--

--

--

--

--

--
--

--

--

--

--

0

the

calculation for C(X) within chapter 3.

To explain how tables A.1-2 and A.1-3 are developed the following
equations and sample calculations are given. These are simply
derived from figure Al-l:

Case O: ~O=xl=x2=x3=#= ~S=

Case 1 through case k=9:
M(X)
Xs
oldX5
o~d

X5
old

X5
old~s
old

)a6
+

+

+

+

+

Case k+l=10 through

M(X)
M(x)
M(X)
M(X)
M(X)

case

) a9
)a6
)a4
)a14
) al”

n=15:

.—-——--————.—.-——.— .—.- ,———— .—_____
_()~ hlsc-21f;34

Working through some of the calculations:

Case O:
~o=~l=~2=~3=~4= ~s=o

Case 8:
~o = = (O+a11)a6 =‘X5 ld+M(x))a: = ~a11)a9 = a/a’’)a6 = a2xl = ~oo[d+ (x5:[d+M(x))a6
X2 = Xlo,d+ (x50Ld+M(x))~ = (all)a6 = a2
X3 = x20td + (X50[d+M(X))a4 = (a11)a4 = 1
Y = Xso[d + (x50td+M(x))a14 = (all)~14” = =10
X5 = x40[d

+ (x50[d+M(x))Q’0 = ((yll)a10= a6

Case 9:
~o=,

(XsO[d+M(X))a~ = (aA + O)~A = (aA)aA = alz
xl = Xoo-d+ (x501d+M(x))a = a2 + (a)a9 = aa
X2 = Xlotd+ (x50i~+M(X))a6 = a5 + (a6)a6 = a14
X3 = x201d

+ (x50[~+M(X))a4 = a2 + (a6)a4 = a4
X4 = x30Ld + (X50[d+M(X))a14= 1 -t-(aA)a14= al”
X5 = x401d

+ (X50[~+M(X))~’”= a’” + (a6)a10 = Q8

Therefore, CK (X) = a8X5+a’0X4+a4X3+a’4x2+a8x+a’2.

The parity-check symbols are available in the feedback shift
register after the message s~ols M(X) have been clocked into the
circuit k times. Cases k+l through n simply shifts these check
symbols out of the feedback register and into the output shift
register which already contains M(X) at that time.

A.2 OTHER RS SHIFT REGISTER ENCODER CIRCUITS

CK(X) = Xn-kM(X)mod g(x). The hardware can take care of the time
delay by just piecing the data fields together at the proper time.
So our input can be either Xn-kM(X)or just M(X) to determine the
following hardware decoder. The following SRC is of the same
Galois configuration as figure Al-l.

—— ——.— ________ . —.
TJ.
—> \lsc.21s3i

I I

r’
90 < ●*.<I

91 g~.k-l 3‘m’ ‘;.-’FI’** *-’ s;->~;>[s.
t

INPUT = Xn-kM(X)= M(X)

Figure A.2-1. - Encoder SR6 using CK(X) = M(X) mod g(x).

CK(X) = Xn-kh(X)M(X)mod (Xn+l) because h(X) = (Xn+l) / g(X). The
following circuit is using this parity-check polynomial. h(X)
instead of the generator polynomial g(X); h(X) is related to g(X).
The circuit is initially loaded with the Mi. Notice thait this
Fibonacci configuration uses the reciprocal of h(X) to dictate the
sequence of the coefficient connections.

chk-1
-’w’

c1hk-2
=<-lll.-= .9.-,s:”‘–1~1<+~

W>..* h2>FIJ>F-E
●

—> OUTPUT = CK(X) = Xn-kh(X)M(X)mod (Xn+l).

Figure A.2-2. - Encoder SRC using CK X) = Xn-~h(X)M(X mod (Xn+l).
.-

Besides the Galois and Fibonacci configurations, there are others
which require substantially less hardware. One of these
configurations which is more closely matched to the hardware is the
Bit-Serial Reed-Solomon Encoder by Elwyn R. Berlekamp. The (;alois
and Fibonacci configurations are more straightforward from a
mathematical and more easily understood viewpoint. However, the
Bit-Serial encoders are more efficient from an implementation
viewpoint. If there is further interest in Bit-Serial encoders,
please refer to the references section.

APPENDIX B
RS HARDWARE DECODING DESIGN

If one only views the coding system as a mapping and demapping
procedure and tries to design a look-up-table hardware circuit, one
is in for a big surprise. This type of design is impractical
because it requires a ridiculous amount of memory; Table B-1
testifies to this fact. We need a better hardware design than,this
family of designs! s

TABLE B-1. - MEMORY TABLE OF A LOOK-UP-TABLE HARDWARE
.

Code: RS encoder RS decoder

CIRCUIT

(ntk) 2~ X mk2ti X m(n-k) bits
(3,1) 4“’X4 bits 64X2
(7,3) 512 X 12 bits >106 x 9
(7,5) >106 X 6 bits >106 x 15
(15,9) >1010X 24 bits >1018X 36

(255,223) >1069X 256 bits >lom X 1,784

bits
bits
bits
bits
bits
bits

The decoding hardware could simply be a combinational logic ci:rcuit
as in figure B-1. The Sf are an EXCLUSIVE-OR (XOR or SUM c]r2)
function of R(X), the xi and the yf are an ~D function of the sit
the E(X) 1 is simply the xi and the yj with zero padding, and then
finally C(X)? = R(X)+E(X)l. But for large codes with a lc]tof
error correction capability, this circuit is also not practical.

.

R(x) —7—
Ri

—> AND

(n-k)/2
—/—>

‘i

(n-k)/2
—/—>

Yi

ZERO
—

PAD ,—:—–

L- > in

>

Figure B-1. - Combinational RS decoding circuit.

—.—.,————..———._— ..—
.._c)y_ ;\lsc-21834

RS decoders are very complex compared to RS encoders. RS decoder
circuits usually employ dedicated processors using parallel
processing techniques. Low data rate decoders, especially post
processing designs, can be done using sequential techniques. High
data rate, real-time RS decoders usually require piarallel
processing designs. Since most decoding applications are ones with
continuous inputs, often pipelining (a form of parallel proc(?ssing)
is easily applied to the sequential stages of RS decoding. If the
stages themselves can be partitioned into more of a pt~rallel
processing architecture, then even higher data rates alonlg with
lower decoder processing delay can be obtained without
interleaving. The following sections concentrate on some general
design considerations for dedicated and pipelined architectures.

B.1

The
can

,

BCH SHIFT REGISTER SYNDROME CIRCUITS

SRC to calculate the syndrome s(X) = sz~-1X2t-1+ ... + SIX + SO
be as simple as one of the previous encoder circuits with the

input being R(X) instead of M(X). The syndrome components Si are
then found as Si = s(cr’)by additional circuitry.

F ‘-
90 < I

91 g~-k-l

L‘m’ : ‘k -’lzl’oep’ s;. -’F1’E”

t
INPUT = R(X) J

Figure B.I-l. - Syndrome SRC using s(X) = R(X) mod g(X-).

We can also send the R(X) into the front of the circuit, b~itwith
s(x)register

s s (x) [(n-k) shift]
●

———.—.—..—.— ——..—
--]()()– Nisc-21834

90 < I I

91 g~.k.l

‘m. -’m’ ‘~. -’l&l’oQ o-’ s~M .-’Ft–

t
~ INPUT = R(X)

Figure B.1-2. - Another syndromb SRC using s x) = R(X) mod g(X

S~ can also be found directly after R(X) has been completely
clocked-through the following SRC. This SRC also demonstrates that
dividing a polynomial by (X+ai) is the same as evaluating it at ai;
Si=R(ai).

ai <

?
R(X) —> z >

“ “d
Si

Figure B.1-3. - Syndrome SRC using S1 = R(ai).

B.2 GENERAL HARDWARE CIRCUITS FOR &i-aJ = aK

Instead of calculating the remaining decoding steps using only a
microcomputer and software, one should consider designing the
decoder using more pure hardware, i.e., ROMIS, SRCIS, XOR gates,
AND gates, programmable gate arrays, microslice processors, etc.

ai + aj = aK:

addition can
basis.

~cowtentaj= ~K:

m XOR trees.
basis using

aiaj = aK:
multiplying

We already know from sections 1.3.1
be performed using m XOR gates on a

We can llultiplyby a single constant
These trees are also designed on a

and 1.4.5 that
tuple-by-tuple

tuple-by-tuple
such design tools as Karnaugh maps.

We can multiply any two field symbols togeth(=r by
and then reducing both the ai and aj polynom~ialst

-—__—. —.——— ..—.—.
._.j ()1._ :\lsc-2i33.f

representations together using algebra. Then, we can build the
hardware using just XOR and AND gates for each binary tuple.
is, let ai =

That
i~a3 + iza2 + ila + ,iO for ij = either O or 1 and

j = 0,1,2/“””/m-l* Let aj be likewise defined. Then, the
following relationship occurs using the F(X) and a(X) that we used
in our (15,9) RS example.

afaj = ~f+j s
[(ioj3+i1j2+i3j1+i3jo)+i3j3]a3

+ [(ioj2+i1j1+i2jo) +i3j3+(i3j2+~2j3)]a2
+ [(ioj1+i1jo)+(i3j2+i2j3)+ (i1j3+i2j2+~3j1)la

+ [(iojo) +(i1j3+i2-j2+~L3-jl)l

aiaj = aK: We can multiply any two field symbols ai and aj together
by usin,gtwo m-by-m ROM tables to find the logarithms of ai and aj
which are i and j. Then, we can use an end-akound carry adder to
ADD aid reduce
m-by-m ROM table
In this circuit
designed around.

i and j modulo n. After this, use another
to take the antilog of K=i+j to determine aK = ai+j.
neither input can be O=a-=; however, this can be

~faj = ~K: Multiplying ai by aJ can also be performed in a manner
similar to dividing one symbol using its polynomial representation
by the other s~ol~s polynomial representation. This circuit is
similar to the encoding circuits, but use F(X) to determine the
taps of the SRC. Load the SRC with aj, clock i times to multiply
by ai (i~l), and the result is in the SRC. Each clock of this SRC
is e~ivalent to counting through the field, i.e., l,a,a2,a.-’,
l,a, a2 ,.. .,ai. Another SRC which counts by alpha (e~ivalently
multiplies by alpha) is a m-bit parallel clocked shift register
with its output multiplied by alpha; use any previous circuit.to do
the multiplication. Then, after the multiplication, send its
output to the shift register’s input. The result aK could then be
stored in the SRC if desired.

aJ / ai = a~: Division between two field symbols ai and aj can be
done by taking the denominator ai and sending it through a -2m-by-m
ROM . This determines its inverse a-i. Then, aj / ai = aK can be
found by multiplying a-i and aj together using any valid
multiplication design. The denominator input cannot be zero.

aj / (yi = aK: Division can also be done by subtracting logarithms.
We can divide any two field symbols ai and aj (except ai=()) together
by using two m-by-m ROM tables to find the logarithms of ai and aj
which are i and j. Then, we can use an end-around carry adder to
SUBTRACT and reduce i and j modulo n. After this, use another
m-by-n ROM table to take the antilog of K=j-i to determine aK = CYj-i.

B.3 DIRECT METHOD HARDWARE FOR o

The direct method requires fewer
method for T = 0,1,2,3, and maybe
to have our hardware solve for o

(x)

calculations than the iterative
4 error symbols. So we may want
(X) using the direct method for

when a few error symbols are thought to have occurred. When a lot

of errors are thought to have occurred we should possibly uscz some

other method applied into hardware. Also a hardware system might
run different algorithms simultaneously and the first one done
passes its o(X) solution to the next decoding stage; this dof?snot
seem synchronous and efficient. ‘

B.3.1 Previously Calculated Determinants

In section 4.3.2, we start out trying to solve a t-by-t matrix.
If DET lSal~= O, then we keep trying the next smaller matrix until
DET lSall for i<t is not zero; the largest non-zero determinant
determines how many errors is thought to have taken place (i.e.,
deter-minesT). It should be noted that once the determinant. of a
t-by-t matrix has been calculated, it is possible for all the
remaining determinants for the i-by-i matrix, i<t, to also have
been partly calculated. Thus, these results should be placeciin a
temporary memory location and the hardware may be able to sav~ztime
or amount of hardware not recalculating terms of the smaller
determinants. Using the familiar (15,9) RS example (section
4.3.2), letT=2. Then, instead of choosing the first two equations
as in section 4.3.2, we will choose either the middle two or the
last two equations from the following:

S102 + S*O1 = S3
S2C72+ S301 = S&
s3tJ2+ S401 = S5
S402 + S5CT1= S6

--

Wo get either set of these e~ations:

S202 + S3C71= S4 S302 + S4C71= S5
s~o~ + S4CY1= S5 S402 + S501 = S6

The corresponding matrices are lSal 2,3 and lSa13,40

The determinants of these matrices have already been calculat~sdand
stored into memory at the time when the determinant o:C the
t--by-txst~.i):WZ.Z calcu?.ated. Let US show this. I/hen T=t=3,

——..-.-.
--103- hlsc-218ti

we get some

S103+ S*U2+
S2(Y3+ 53(72+
S303 + S4C72+

Let lSOl~ =

equations.

S301 = S4
s4tY1 = S5

,s501= ‘6

s, S* S3
S2 S3 S4
S3 S4 S5

The corresponding determinant is DET

s, S* S3
DET lSol~ = DET S2 S3 S4

> S3 S4 S5

Isal t“

Let us calculate this by arbitrarily taking the determinant across
t-hefirst row.

—

DET Isolt = S1 DET 1:::14 1:::514
+ S2 DET 1:::41‘3

5 + S3 DET L

DET lSal~ = S1 DET lSa134 + Sz DET 1:::1
4
5 + S3 DET lsolz,3#

Notice that DET lSal34 and DET IS0123 was calculated when DET lSalt
was calculated. The~efore, it is s’hewnthat some determinants of
a smaller matrix can be calculated if the determinant of its larger
matrix has been calculated.

There exists one way to calculate DET lSal~ to be able to include
all the four equations (i.e., the S3,S4,S~,and SA equations in the
beginning of this section), but not all the coxnbinationsof them.
Let us show this by continuing this example. Calculate DET lSal.
by starting at the second row instead of-the first.

-b

I
1:3:1DET lSol~ = S2 DET IS0124 + S3 DET 1 ~ + S4 DET ls~lI,3v

Therefore, to save time and/or other resources by not recalculating
all the determinants terms, select the particular e~ations which
correspond to how the DET lSCJltis calculated. Designing how this
is calculated might come in handy when designing the hardware. If
it’s easy to implement, try not to recalculate something unless you
need to.

—.—-.. ..— -.-..—— “c .—.—‘-I().1-- ‘- -- IISC-21[;34

B.3.2 Reduced o(XI Computations

There is a shortened method to solve the set of equations for o(X).
Let us use the direct method in section 4.3.2, but reduce the
number of multiplies, divides, and adds. Follow the following
example which is similar to the (15,9) RS example with T=t=3.

s, S* S3
Isol =t S2 S3 S4

S3 S4 S5

DET lSal~ = S1[S3S5+ (S4)2]+S2[S2S5+S;S4] +s3[s2s4+(s3)2]
= S1S3S5+S1(S4)2+(S2)2S5+S2S3S4+S2S3S4+ (s3)3

And now notice that we can save 4 multiplies and 2 adds by noticing
that ai+ai=O in modulo-2 math.

DET lSalt = S1S3S5+S1(S4)2+(S2)2S5+(S3)3

s, S2 S4
‘1 = (DET lSal~)-lDET S2 S3 S5

S3 S4 S6

‘1 = (DET 1So It)‘1[S1S~S6+S1SAS~+(S2)2S6+S2S~S~+S2(SA)2+(S3)2SAJ

Well, no terms dropped out here. Similarly, rJ2is found.

‘2 = (DET ISa I~)‘1[S1(Ss)2+S1SAS6+SzSAS~+S3(S6)2+S2S~S6+(S3)2S~]

Well, no terms dropped out here either. Similarly, but with two
terms dropping out, as is found.

‘3 = (DET ISC It)‘1[S3SAS~+(SG)3+S2(Ss)2+S2SAS6+S3S6S~+(S3)2S6]
= (DET lS(Ylt)-l[(S6)3+Sz(S~)2+S2SAS6+(S3)2S6]

This circuit requires 40 multiplies, 3 divisions, and 16 adds to
solve for ~(x) or ap(X) when T=t in a (15,9) RS code using Cra-n~er’s
rule. If we care to do more algebra, we can find that we can
reduce the nuxnber of multiplies, divides, and adds even further.

B.4 HIGH DATA RATE RS DECODING DESIGN

There are real-time processing decoders and there are post
processing decoders. Post processing RS decoders are ones which
possess an increasing decoding delay as tile number of errors to
correct increases. Typical post processing RS decoders are
software programs executed c)n most zny type of computer.

Post processing
This is because

hardware are rarely designed for real-time systems.
these systems introduce buffer overflow conditions

(or possible loss of data) and adds to the overall decoding delay
and complexity of the system. Real-time systems almost always use
real-time decoders. Real-time decoders have a fixed decoding delay
which is usually small
to correct.

Real-time RS decoders
nature of the decoding

and is independent of the number of errors

usually take advantage of the pipelined
stages so that high data rates can often be

accommodated without being forded to use interleaving techniques.
If we do not take advantage of these major partitions, we must wait
longer before we can start decoding
are long time periods between each
data rate decreases. Pipelining
design-high data rate RS decoders

another received word; if there
received word, then the overall
techniques are often used to
which are often found in real-

time systems. Pipelining is partitioning a sequential process into
many smaller processes.such that dedicated circuits efficiently and
simultaneously work these smaller processes in a sequential manner.
High data rate designs ar”esimilar to figure B.4-2 while lCJWdata
rate ones are similar to figure B.4-1.

R(X) —>

input
register

or

I input
buffer

—>

a single,
sequential
processing
circuit
which
calculates
the Si,
the o!,
the Zi,
the xi,
the y~,
and
the Cil.

output
register

or
output
buffer

—>’ c(x) ‘

_-

Figure B.4-1. - Low data rate RS single processor decoder.

——. .—
--lo6– \Isc-21/;34

R(X) Ci J

>

4 4

c(x) I

Figure B.4-2. - High data rate RS pipelined decoder.
●

,

If we have a low data rate RS
encompassing processing circuit
for calculating the Sip Oi, Zi,
would accept another R(X) to be

decoder, then we might design one
● This circuit would be responsible
x. yi, and Ci’ for R(X) before it
d~~oded. This single circuit might

be a general purpose microprocessor or a microslice processor or
comprised of many commercially available discrete parts or maybe
even some type of computer executing some type of Softmwar-c

Figure B.4-1 demonstrates the single processor design. For a real-
time system, the input register must be at least as large as the
certain constant number of clock cycles required to calculate the
s ~fr Zft xi? Yfr and Ci’ for the largest nutier of errors to
d~code. Low data rate, real-time decoders also have larger input
registers than their high data rate, pipeline counterparts. For a
real-time system, the output register will contain the decodeclcode
word C(X) ‘. Due to the decoder delay, the registered output is
synchronously bursty, i.e., there are long time periods between
decoded code words. If it is desired to have a continuous olutput
data rate, then we can smooth the output either by designing a more
complex output register or by synonymously using a small first in,
first out (FIFO) memory circuit.

If we have a high data rate RS decoder, then we would probably
-—

design a processing circuit with multiple processors. Each
processor would only work on a separate portion of the overall
process. Pipelining speeds up the process along with smaller input
registers and decreasing decoder delay. One processor would be
efficiently designed to specifically calculate the S;, another for
t~~ ~i, and others for the Zi, xi, Yf r and Ci’. This pipeline
process allows, for example, the new Si to be calculated
simultaneously while the ai from the old Si are being calculated.
These nultiple processors might be SRCts, dedicated hardware, or

commercially available processors. Figure B.4-2 demonstrates this
multiple processing (really parallel processing) circuit. For a
real-tir,e s}~stem, a pj.peline design can be designed without an

——.———.-
–107--

—.
Nrsc-21834

output register; if the parity-check symbols are not output [i.e.,
only the message symbols (and possibly a decoder status word) are
output] and a continuous output data rate is not required, then an
output register is not needed to smooth the output. Real-time
processing RS decoders usually require registers (i.e., small time
delays before some pipelined circuits) while post
decoders usually require buffers and/or files.

A typical pipelined, high data rate decoder often
implement each stage. The SRC to calculate the Sj
the same as the encoder circuit (see section B.1)

processing RS

uses SF{C’S to
can be almost

● The SRC to
calculate the Of is often patterned after Berlekamp’s iterative
algorithm and Euclidean greatest common divisor algorithm. The ~i
determination is the most complicated and usually requires the most
processing time. Therefore, it is the data rate limiter c]fmost
systems. The Zi values can be calculated quickly using a SRC and
using the Chien search with a parallel format implementatic)n. If
the ai SRC requires more processing time than a Zi SRC implemented
in a sequential format, then a sequential Z. SRC (rather t~lan one

in a parallel format) might be used to s~ve size, weight, and
power. The xl circuit can be simplified slightly by letting the
primitive element aG used in the code word generator be aG=a’. The
y~ circuit should be designed to require less processing time than
the limiting process (which is often the Of circuit). The final
SRC is the C{t circuit which is nothing more than a time c[elayed
version of the received symbols R~ shifted out after some of the RI
have been added to the y{ at the X{.

The partitioning between the stages is illustrated in figure B.4-2.
For some of the stages, it is possible to start the process of
calculating its set of values when the previous stage has not yet
completely calculated all of its values. For example, it is
possible for the C~l circuit to start to output the decoded code
word symbols C~’ at the time when the most significant error
location XT and the associated error value y~ had been calculated
N{D still-maintained a continuous output. A correctly just-in-time
architecture should add to the degree of pipelined (or pa-~allel)
processing.

Besides the previous discussions of stage partitioning,
partitioning of the stages themselves are possible. Hypersystolic
array designs are examples of this. These hypersystolic array
designs partition the processing of each stage into many cells (or
computational units) ~Thi~h add to the degree of palrallel
processing; therefore, even higher data rates along witth less
decoder delay results. See “Hypersystolic Peed-Solomon E)ecoder
Final Reportt’ within the references section.

For a high data rate (real-time) system, a pipclined design t:hatis

————.—..-..—.————.—-———. —.____ —.._._-.. ——..
l(]~ :\\sc-21834

globally synchronous may be preferred. For an ultra high data rate
(real-time) system, a design with even more parallel processing
that is globally asynchronous, but locally synchronous, e.g., the
hypersystolic designs, may be preferred. Low data rate systems
might be designed using a SRC, a 9eneral Purpose processor, or by
running some high level (or low level) computer language prog:ramon
any available computer. High data rate systems usually demand some
type of parallel processing implemented directly into a SRC,,

,

- .-

——.——... . ——. ———,___ ..—
..j(,L)–

—-——___

:iIs:c-21$;J4

APPENDIX C
l~TRICES AND RS CODING

People sometimes prefer to work with matrices to reduce the
algebraic load. Using matrices can come in handy when developing
software and possibly hardware. I sometimes prefer matrices
because itrs sometimes easier to see how the code,is working.

6

C.1 RS ENCODING USING MATRICES

Start off with the generator matrix g. g is a k-by-n matrix g~.~.~.
In RS uding it must be constructed directly from the genera orz
polynomial g(X) = XA+~10X5+a14X4+a4X3+adX2+a9X+aA0To simplify the
notation, let -~ = O, 0 = 1, 1 = a, 2 = ~2, n-l = an-l.
Therefore, g(X) = [6 9“6 4 14 10 0]. Notice that since we are
working with matrices, I decided to use the mathematical convention
of writing in increasing order of magnitude, i.e.,
g(x) = [90 9, ““” g“.k] and not g(X) = [g.-~gn.~.l● *O 9.]” The
non-systematic generator matrix gn~-~Y~,k-~Y-n=“-g~On~~~~’isobtainecifrom
the generator g(X) = [696414100].

9 =
mn-sys

696 414100 -m-m -ao-a) -m -m-m-m
-a 69 6 4 14 10 0 -m -m -m -~ -m -a) -m
-a -m 6 9 6 4 14 10 0 -m -m -w -m -w -m
-w -m -m 696414100-m -m-m-m-m
-a -m -m -m 69 6 4 14 10 0 -m -aY-m -m
-a -m -m -m -m 6 9 6 4 14 10 0 -w -m -m
-m -m -m -00-m -~ 6 9 6 4 14 10 0 -~-m
-m -a)-m -m -oo -m -00 6 9 6 4 14 10 O-m
-~ -~ -~ -~ -~ -~ -~ -w 6 9 6 4 14 10 0

The systematic generator matrix gsy~is directly constructed from
the non-systematic generator matrix g--~ ~ by standard matrix row--
operations; one row multiplied by ai and {hen added to another row
and the result replacing the row added to. To acquirfz the
systematic form, we want a k-by-(n-k) Parity matrix P

k-by-(n-k) joined
with the k-by-k identity matrix Ik, i.e., g~YS,k.bY-k=

IPk-by-(n-k) Ik] .

In other words, transform the g~On-~ySinto the g~Y~shown below.

9 =
Sys

This is

‘k-by-(n-k)

,

Pk-by-(n-~)

69 6414
1123 8 14
3 11 10 9 7
712 8 0 7

14 12 5 0 9
4 14 12 1 9
7 6 4 14 11
2 13 034

-m -m 8 14

clearly of the
is:

=

10 0 -m -m -m -m -m

12 -~ o -~ -~ -m -m
1 -m -m o -m -00-m
8 -a)-w -m ()-m -m
4 -00-m -m -m o -m
9 -ccl-m -m -m -00 0
4 -m -m -m -m -m -m

10 -m -m -aI -m -m -m

3 -m -m -m -a -m -m

o
-cc)

-m
o

-a)

-m
-m
-m

-al

-m
-a)

-m

-m

form g = [Pk-by-(n-k)sy$,k-by-k lk] wh

o

6 9 6 414
1123 8 14
3 11 10 9 7
712 8 0 7

14 12 5 0 9
4 14 12 ,1 9
7 6 4 14 11
213 0 3 4

“w -m 814

10
12
1
8
4
9
4
10
3

and where the identity matrix 1~ is:

o
0

-m
-m

o

Performing matrix row operations within a finite field
as we usually perform matrix row operations within
field. However, we use the addition and multiplication
finite fields, not infinite fields. Let us work an

re

is the same
a in,finite
methc]dsfor
example of

calculating the first two rows of the g~
first start at the first row of g~.~y~,~e;;;11~~d6~~~~0”~~Z~ t~~
previous g~m-s~swe obtain the following:

-111– —
——

?}ISC-21S34

Therefore,

9non-sys,rowO,O
9nDn-sys,rowO, 1

9non-sys,rowO, 2
etc.

the coefficients of “rowOttare:

= 6
= 9
= 6

9non-sys,rowO,n-k-l = 9non-sys,row0,5 = 10
9non-sys,rowO,n-k ‘9 non-sys,row0,6 = o
9non-sys, rowO,n-k+l = 9non-sys,row0,7 = ‘~
etc.

9 non-sys,rowO,n-l = 9non-sys,row0,14 = ‘m ‘

Now the first row, denoted rowO, is the same for botl~ the
systematic and non-systematic generators because
9’ a“non-sys,ro>O,n-k = 9 non-sys,row0,6 = = 1 and gnon-sys,ro~oi = a-m = O for
i = n-k+l, n-k+2, ● **, n-1 = 7,8,...,14’. Ther~?fore,
9 = 9 =
sys,rouo non-sys,rowO [696414100 -m-m-m-m-m -m-so-m].

*
To find the second row of gsys, denoted gSyS,~oW1,we do standard.
matrix row operations.

9 =
sys,robfl 9 +non-sys,rowO,n-k- 19non-sys,rowO

= 10[6 9 6 4 14 10
+ 9n0n-sys,rowl

= [16191614242010
+ 9n0n-sys,rowl

= [141149510

9non-sys,robfl
o -a -m -m -m -co -w -m -m 1

-m -m -m -w -m -m -m -m 1

= [1“-4 114 9 510-m -m-m -oo-a-m-m-m J
+[- 696414100-m -m-m-m-m-m-m 1

= [(l+-oo)(4+6) (1+9) (14+6) (9+4) (5+14) (10+10) (-*O)
(-w-m) (-w-m) (-w+-m)

= [(1) (12) (3) (8) (14)
(-w) (-m) (-m) (-m) J

=[112381412 -@O-m
.

(-*-m) (-e-m) (-e-m) (-m--m)]

(12) (-~) (o) (-~) (-m) (-=1)

-m -m -m -m -m -m J

.-
The result is the ithrow of g~YS,denoted g~YS,roHi,when g~ysrowi,n-k+i= o
and g~Y~,rOHi,j= -w for j = n-k,n-k+l ,...,n-k+i-l’ and. for
j = n-k+i+l,n-k+i+2, ...,n-1. The result that we have just
obtained, is the second row denoted gsys,rowl.This is because
9 =
,sy6,rowl,7 CY” = 1 and g,p,rowl,j= a-” = O for j = 6 and for
3 = 8,9,...,14. It should be noted that more and more iterations
of the previous procedure are needed to obtain g5YC,roMifor i
increasing.

The parity-check polynomial h(X) = Xn+l / g(X) has a correspc)nding
parity-check matri>: h(~-k)-~y-n. h can be either systematic or
non-systematic, but must be in accordance with its partner g; just
as h(X) is related to g(X) , h must somehow also be related to g.

— .—,— -.———.
--112-- hzsc-21834

h can be found from h(X) = [hO h, ... ht,,~.~W(,]in the same
m~~~~r that g can be found from g(X) = [gO g, ... gz~]. Once either,
g or h is found the other is specified; g~.~Y-~= [P~.~Y.(n.~l1~] and
h = [1~.k‘k-by -(n-k)(n-k)-by-n ‘] where P~by(nklT-.. is the transpose of P~-by-[n-k,.

The message M can be encoded directly into the code word C using g;
cl-~y-n =M l-by-kgk-by-(n-k) “
this . From chapter 4,

cSys = Mgsys= [-~ 11 -aI

Use the (15,9) RS
M= [-~ 11 -m -m -m

-a -m -m -a -m -ml9s,

example to demonstrate
-m -m -m -mI*

s

9 = g~ S~w~iCwas previously calculated within this appendix. Once
t~~s ma~rix calculation is completed, then C~ySis generatecl.

cSys =[128144108 -rol l-m-m-a -m

This result checks with the results
c(x) = a“X7 + a8X5+a10X!+a4X3+a14X2+a8X+a12.

C.2

The

RS DECODING USING MATRICES

syndrome s can be calculated
using hT.

sl-by-(n-k) =

To find

Rhl-by-n n-by -(n-k)T

the errors and
R l-by-n = cI-bv-n + ‘1-bv-n ‘here E.
s =

the
THE

NOT

“m -m -a 1

obtained in chapter 4;

directly from the received

their values notice
is the error word.

word R

that
Now

h isa fact that s=ChT=O becauseRhT = [C+E]hT-=’ChT+EhT. It is
parity-check of C. Therefore, s = ChT+EhT = EhT. THEREFORE,
SYNDROME IS A FUNCTION ONLY OF THE ERROR PATTERN (OR WORD) AND

THE RECEIVED WORD!

Wait a second, s=RhT=EhT; but this does not mean R=E.
calculations, we detemine the value of the syndrome s
then find E with the fewest non-zero m-tuples such

sot-- in our
by S=WT and
that s=EhT.

This fewest number of errors idea should be familiar to us 13ynow;
it is MLD. The problem is to come up with an efficient alc~orithm
which determines this E.
if s=.~T=O, then no errors

But what if one
S=RhT=[s~C~s~C~+l● ● “ ‘FcR+.-k-l

We could start with no errors
occurred.

error Syntbol occurred?

(T~O) and

Then,
] # O where SI are the coefficients of

s(x) . So we need to-start calculating “s=EhT for each n2 :;ingler
non-zero error s~,bol possibilities of E until. \:e get this
particular value of s. Notice the worst ca~;e condition i~

performing the calculations for all the n2 possibilities or storing
all n2 possibilities in a table.

But what if two error symbols occurred? Then if Si#O, the nz single
error s@ol possibilities in s=EhT would not equal s=RhT. So then
we try all the (n4-n3)/2 possibilities approximately n4 d~ouble,
non-zero error symbol possibilities. One and only one solution of
E exists with the fewest number of error symbols. If there is no
solution, then we need to keep calculating s=EhT for more and more
errors (TSt) until a solution is reached. You can imagine the
number of calculations which are needed to be performed if we have
a lot of errors. That is why iterative algorithms are very
popular. The number of possible combinations of T, non-zero error
symbols is:

,

(;)(P-i)l = (n!/(T! (n-T)!))(Y-l)l

..

Even super computing usually cannot determine all of these possible
combinations to store into huge tables which are impractical.
Continuously calculating s=EhT for arbitrary error patterns until
a solution is obtained is also usually impractical. Howev~?r,we
can check our results from the previous chapters. Let us calculate
s=RhT which should e~al s=EhT; denote s=RhT as s~=R.hTand s=:EhT as
s~=EhT. The received word from chapter 4 is R = [12 8 3 4 10 8 -m
110-m--a-w-~-~ 1.

‘R = RhT
=[12834108-mll Oa-m +-m-oo

Let us find hT h = h~Y~= [1~-~p~-W-(~-~,T]

h =
sys

o
-m
-m
-m

-m

-m

o
-m
-m

-m

-m

-w
-m
-m

o
-a
-w

-m
-m
-m
-m
-m

o

T

6
9
6
4
14
10

1

12
3
8

14
12

3
11
10
9
7
1

7
12

8
0
7
8

And therefore, hT = hs .
distance d~i~ Yis the sma lest number of

It should

14
12
5
0
9
4

4
14
12

1
9
9

7
6
4

14
11

4

2
13

0
3
4

10

-m
-w

8
1
4
3

-.

the minimumbe noted that
columns of h (or rows of hT)

that sum to zero; this is a linear block code corollary anc~thus
also works for RS codes. Notice that in this example, d~i”==2t+l
should be seven symbols. There are only n-k=6 rows o*’hCY~and
because of the identity matrix, no six or fewer uni~e rows z~ddto
zero. Therefore, this only shows us that dfii~> 6 and it is; d~i~=7.
This fact should serve as a good check for a valid h (and thus g).
Getting back to this example, hT = hCY~T.

hT =

-00 -m -a
-m -w , -00

696
1123

-m -00 -m

-m -m -cc)
-m -m -m

() -m -m
-w o -m
-m -m o
4 14 10
8 14 12

31110971
712 8 0 7 8

1412 5 0 9 4
41412199
76414114
21303410

-a -m 8143
,

So get -back to s~

‘R = RhT
= [12 8 3 4 10 8 -~’”11
= [3115971]
= [so s, S2 S3 S4 S5J

Therefore, s =a3
g(x) $t-l;m::;:’:+:2=U5’ ‘3=a9’‘~=a7’and ‘S=a; s ‘x) = ‘(x) ‘od

decode=d‘~~lx
1 o“ Now let us check our error pattern

chapter 4. The error word from cha~ter 4 is
E =

‘E =

‘E =
=

=

EhT and make sure s~=sE.

Ehl
[-m-mo-oo-m-m-m~o
[3115971]

-a -a -a -00 -a) -~] hT

Now does SE = SR = [SO S1 Sz s3 s4 s~] = [3 11 5 g 7 l]? Yes, they
are both the same! !!

Great ! Syndrome calculations can also be done using matrices;
sometimes”matrices are easier to work with. But to be
having calculated the g and h matrices correctly, let
the syndrome components S~ and verify them; Sf = s(ai)

s(x)

s(x) = so + SIX + S2X2 + . . . + s2t-1x2t-l

= so -i-SIX + S*X*+ S3X3-i-s4# + S5X5
a3 + allx + ~5X2+ a9X3+ a7fi+ axs=

m-oresure of
us calculate
●

s, = s(a) = 3+11 ”1+5”2+9”3+7”4 +1”5 = O Therefore, S1=QO=l.

S* = S((Y2)= 3+11 °2+5”4+9”6+7”8 +1”1O = O Therefore, S2=CY0=l.

S3 = S(as) = 3+11’3+5”6+9 ”9+7*12+1”15 = 5 Therefore, S3==CY5.
S4 = s(a4) = o Therefore, S4==a0=l.

‘5 = s(a5) = -m Therefore, S5==a-m=0.
S6 = s(a6) = 10 Therefore, S6=’a10.

These results agree with the ones in chapter 4. Also, the Si can
be represented as Si = {SFCR

= [1 1 as’l O al~jcR~ ““0
‘zt+FCR-11; e“9”t

‘t = [s, S2 s~ S4 s~ s~l [oo50-m lo].

Now decode the message!

c1Sys =R+E
=~12 8 3 4108 -ml10-m-00 -m-m-m-m 1

= [12 8 (3+0) 4 10 8 -m 11 (0+0) -m -a -aI-m -m -a)].
=[128144108 -~ 11-w-@-m -m-m-m-m]

= [cK1.by-(n-k) ‘Ml-by-k ‘]

cSys‘ should equal CSYS. In fact, it does if T<t. Anyway, our
estimate of the message Ml is extracted from
CI = [12 8 14 4 10 8 -~ 11 -m -m -a)-m -m -cQ-m]. From chapter 4,

M= [-m 11 -m -m -m -m -m -m -~] which agrees with the dekcoded
message M? = [-CU11 -m -m -m -CU-w -a -~]. Again from chapter 4,
CK = [12 8 14 4 10 8] which also agrees with the de!coded
parity-check CK~ = [12 8 14 4 10 8]. Therefore, we can do these
operations in matrix form if we desire to.

—..——... —..._. —.— —. ——___
.1 I ()– T\iSC-2i:;34

APPENDIX D
A GENERAL MATHEMATICAL OVERVIEW OF RS CODING

This appendix assumes some understanding of the terminology and
relates to primitive (n,k) RS codes over GF(2”) in a non-erasure
system.

The general form of the code word generator g(X) is:

f ‘Fc~i+(aG) i)g(x) = iFcR
=

.

The roots of the code word generator g(X) are consecutive powers of
any primitive element aG of GF(2”) which can be different than the
primitive element a(X)=a used in generating the field with the
field generator F(X). “’The first consecutive root (FCR) is an
integer. A code word C(X) is comprised of a message word M(X)
annexed with a parity-check word CK(X). If the message word.code
symbols Mi (of the form CYJ)are unaltered and are appropriately
placed inside a C(X), then the C(X) is said to be systematic. To
be non-systematic, a code word is often of the fo~ C(X)nO~.~~~Cw~iC=
M(X)g(X). To be systematic, a code word is often of the form
c(x)Syst,mtic

= xn-kM(X) + CK(X) = (Xn-kM(X)) + (Xn-kM(X)) mod g(X) . We
transmit or record code words.

We receive or play back received words. We know that a received
word R(X) may not be a C(X), i.e., we know errors within R(X) are
possible. We need to determine which symbols, if any, within R(X)
are in error, i.e. , we need to determine the error-locations xi of
the form Xj (or the error-location numbers Zi of the form aj). But
wait a minute. RS codes have code symbols from GF(q)=GF(~) not
GF(P); RS codes are q-ary BCH codes and are not P-ary [e.g., 2-ary
(or simply binary)] BCH codes. Therefore, we also need to
determine the error values yi of the form aj. -.

We know something about the coding system; we know g(X), m, n~,and
R(X) . We assume that the number of error s@ols T is less thlanor
equal to the error correction capability t. The purpose of error
correction decoding is to find and correct the errors. Assume an
error-locator polynomial o(X) as a function of the error-location
numbers zi; o(X) is a function of the error-locations xi because the
xi are a function of the Zi and the code word generator’s primitive
element CYG. How do we get o(X) from R(X)? We know if CKGis the
code word generator’s primitive element and that aG ma~~ not
necessarily be the special case of aG=cY(X)=a,then we should denote
Sf = R(CY1)==s(al) for al = (cj)i = CYji,for i=FCR, FCR+lF. .o,2t+FCR-~,

.— —— .—— —__
–117– :klsc-21s34

and for s(X) = R(X) mod g(X) or s(X) from s = R.hT. If FCR just so
happens to be 1 and CYG just so happens to be al=a, then
Si = R(ai) = s(ai) for i=l~2~...,2t and the xi are simply the zir but
in the Xs-~”er form as opposed to the as-~o”er form. IN SLJMMARY,
THE FIRST DECODING STEP IS TO CALCULATE THE 2t SYNDROME COMPCJNENTS.

We also know that Si = R(al) = C(a*) + E(al) = E(af); the syndrome
components S~ are a function of the error pattern. Therefore, the
next step in determining how o(X) is calculated from R(X) is to
link the syndrome components Sf to the error-locator polynomial
u(x) ●

Assume an error-location
error-location numbers Zi
error-locations x~:

d

polynomial
which are

o(X) as
in turn

a(x) = (l+ZIX) (1+22X)● .● (l+ZTX) = 1 + alx +

Then the reciprocal of’s(X) is:

or(x) = (X+2,)(X+Z2)● ● ● (X+ZT) = XT + OIXT-I+

● ☛☛

● ☛☛

a function [of
a function ‘of

+ OTXT

+ OT-lX + C7T

Therefore:

XT+UIXT-’+ ... +cT1x+a. T = (X+21) (X+22) . ● ● (x+z~)

Notice that a~(X)=O for X=zl,z*,....zT.

We need y~zifon the left side of the previous equation. Why or

the
the

how
was yjZji ‘~hosen? Well, we kIIOW Si=E(aI) for i=FCR,FCR+.l,...,
2t+FCR-1 and for aG being a primitive element of the GF(16). If
T S t error s~ols have occurred, we know that the actual error
pattern E(X) is of the form E(X) = ylxj’+ y2xjz+...
X=1,2, ..

+ y~xjTfor j~f
.T. Therefore, since Si=E(a])for i=FCR,FCR+l,2tFCRC1.l,

we obtain Si = ylZ1i+ yzZzi+... + YTZTi for i=FCR,FCR+l,2+”FCRCl-l.
The error-location numbers Z1 are of the form Zf = (aG)jK[where j

“Eis from E(X)]; if aG just so happened to be a’=a, then Z-!= a’
XjK [where jK[where jK is from E(X)] and xi = is from E(X)].

Sf = ylzli+ yzz2i+... + yTzTifor i=FCR,FCR+l, ...,2t+FCR-1 - KNOWN
AS THE WEIGHTED POWER-SUM SYMMETRIC FUNCTIONS. Since the S~ are of
the NON-LINEAR fo~ ylZ1i+ yzZ2i+... + yTzTirwe need the NON-”LINEAR
fO~ Yjzjig

Getting back to finding the link between o(X) and the syndrome,
multiply the previous u(X) equation by yjzjion both sides. The
result is the following equivalent equation:

Yjzji(x T + ~lxT-’ +. ..+ UT-,X‘- ‘T) = YJzJf((x+zl) (x+z2). .(x+zT))

NOW substitute X=zj into the previous equation and remember that
o~(x)=o for X = zlfzz,...,z1,l,or z~.

yjZji(Zj ‘+ OIZjT-’+ . . . ‘a T-lzj + ~T) = O for j=l,2,T

Simplify the previous e~ation for j=l,2,...,T [because a~(zj)=ofor
j=l,2, ...,T] to result in:

Yjzj “T + yjzji+T-l~l + ..O + yjzJi+’~T-l + yJzji~T = o .

Rearrange the terms of the previous NON-LINEAR e~ation to (Obtain
the following:

f+lyjzjioT+ Yjzj ‘T.l + ““” + Yjzj

i+T-l~l + Yjzj i+T =0
.

The prwious equation is true for j=l,2,1.l, or T. Sin(:eall
of the 2t syndrome components Si was shown to be of the form
Si = ylZ1i+ y2Zzi+... + y~ZTifor i=FCR,FCR+l ,...,2t+FC1,l, then the
following LINEAR equation for i=FCR,FCR+l,....T+FCl-l results:

SiOT+ Sf+laT-1+ ... +“si+~-lul+ si+~ = o

The number of independent LINEAR e~ations for the prfzvious
e~ation is T and the number of unknowns is also T; therefore, the
di can be determined from the previous equation.

When T<t errors occur, we obtain additional equations used to solve
for fewer unknowns. This is because we have 2t syndrome compc>nents
(not 2T syndrome components) available. Usually the link is
expressed as: SiO~ + ‘i+l”T.l+ ● CO + si+~.lal+ Si+T = O for
i=FCR,FCR+l, ...,2t-T+FCR-l. The link can also be synonymously
expressed as the following set of equations:

SFCRUT +s FcR+~”T-l + “ “ ● + ‘T+FcR-l”l + ‘T+FCR = 0
sFCR+I*T +s FCR+2aT-1 + ● ““ + ‘T+FCRU1 + ‘T+FCR+l= 0
etc. .

s2t-T~FCR-1°T + ‘Zt-T+FCRaT-l + ● “” + ‘~t~FCR-2°1 + ‘2t+FCR-l = 0

Sometimes the link is also expressed as S~ = Sf-TaT+ S{-T+lUT-l+ ...
+s i.1~1for i = T+FCR,T+FCR+l,2t+FCR-l.

Sio~+ Si+lCJ~-l+ ... + Si+T-lal+ Si+~= O for i=FCR,FCR+l,2T-EFCRCl-l
IS T1lE LINK THAT WE ARE SE~QCHING FOR; this links the known
Si = sl,sz,....s2tto the unknown o(X) = 1 + alX + ... + fJTXT.

We know TSt, but we do not yet know the actual value of T; there
may be many possible solutions of the previous set of ILINEAR
equations for TSt. Using maximum li}:elihood decoding, WE? will

.— ————
–119– TISC-21S34

choose the value for T to be the least value out of its many
possible values; e.g. , if T=t or T=t-1 would be able to solve
Sia~+ Si+la~_l+ ... + Si+~_lal+ Si+~= O for i=FCR,FCR+l,T+FCR-1
and T=1,2, ...It-2 would not be able to solve it, then we would
simply say that T=t-1 errors has occurred. IN SUMMARY, THE SECOND
DECODING STEP IS TO CALCULATE THE ERROR-LOCATOR POLYNOMIAL FROM THE
2t SYNDROME COMPONENTS.

The next step in the decoding process is to correct the errors in
the received word R(X). This final decoding step is perfo~ned by
calculating the error-locations”xi, the error values yf, and finally
correcting any correctable error, if any, in R(X) .

The inverse of the roots of o(X) [or simply the roots of a~(X)] are
the error-location numbers zi! The error-locations x~ are related
to the-error-location numbers zi and are in the XJ form and not the
aj fO~. xi = XA[(log~zi)/G]t e.g., if GF(16), Z1=aA,and CYc=a;z,then

‘1 = XA[(logaaA)/2] = X:(6/2) = XA(3) = X3. If (YGjust so happened
to be crl=a,then xi = ‘XA(log~zi),e.g., if GF(16) and z1=a3, then

‘1 = xA(logaa3) = x“(3) = X3.

After enough error-location nutiers zi (also denoted as error-
location numbers Zf) have been calculated, then we can start
calculating the error values Yf of the form aj. WC! know
Sf=sl,s

?
v-”-tSt

z
and we know Zi=zlfzz~”””fzl and we know

Si = zlYl+z~ y*+ ● *. + z~iylfor i=FCR,FCR+l, ...,2t+FCR-1. Since
T S t, we have enough LINEAR equations to solve for the yi.

Thereforet since we found the xi and the yir the decoded erro~:E(X) o
is of the form:

E(X) 1 = Y,x, + Y*XZ + ● ** + y~x~

Therefore, the decoded code word C(X) t is:

c(x) t = R(X) - E(X)’ = R(X) + E(X)? --

IN SWmY, THE THIRD MJD FINAL DECODI1:G STEP IS TO CORRECT THE
ERRORS IN THE RECEIVED WORD.

——-—- ________ — —.
--]:() -fifsc.21s34

In summary, Reed-Solomon coding is

1. Si from R x or from s(x) [s(X) from R(X) and g(x)]

11. Di from Si

III. C(X)t from R(X) + E(X)? = R(X) + ylX1 + y2X2 + ... + yTxT

a. xi from

b. yl from

Zi (zi from ai)

Si and Zf’

>

--

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Advanced Hardware Architectures (AHA), Inc., “AHA4010.,High
Speed Reed Solomon Encoder/Decoder T=1-10,” Idaho : AHA,
September 1988.

E.R.
Park

E.R.

Berlekamp, Alqebraic Codinq Theory, California : Aegean
Press, 1984.

Berlekamp, “Bit-Seri’al Reed-Solomon Encoders,” IEEE
Transactions on Information Theory, Volume IT-28, Numb(~r 6,
pages 869-874, November 1982.

,
Cyclotomics (a Kodak company) for the Defense Advanced
Research Projects Agency (DARPA), ‘tHypersystolicReed-Sollomon
Decoder Final Report,tt Volume I, California : Cyclotomics,
March 1988. .

s. Lin, An Introduction to Error-Correcting Codes, New
Jersey : Prentice-Hall, 1970.

S. Lin and D.J. Costello, Error Control Codinq: Fundamentals
and AD Placations, New Jersey : Prentice-Hall, 1983.

Midwest Research Institute (MRI) for The National Academy of
Public Administration, Economic Impact and Technological
Proqress of NASA Research and Development Expenditures: Volume
III, Technolo~v Case Studies: Diqital Communications, Civil
Aeronautics Performance and Efficiency, and Future Technoloqv
Areas, pages I-1 to D-36, Missouri : MRI, September 1988.

H. Taub and D.L. Schilling, Principles of Communication
Systems, New York : McGraw-Hill, 1986.

E.J. ‘Weldon, partial handouts from the seminar ~tX:rror-
Correcting Codes & Reed-Solomon Codes,t’pre-1987.

J.S.L. Wong, T.K. Truong, B. Benjauthirt, B.D.L. Mulhall, and
1.S. Reed, “Review of Finite Fields: Applications to Discrete
Fourier Transforms and Reed-Solomon Coding,!’ Jet Propulsion
Laboratory (JPL) publication 77-23, July 1977.

R.E. Ziemer and W.H. Tranter, Principles of Communications:
Systems, Modulation, and Noise, Massachusetts : Hou(ghton
Mifflin, 1985.

ADDITIONAL RECOMMENDED READING

1.

2.

3.

4.

5.

6.

7.

8.

9.

10*

110

T.C. Bartee, Data Communications, Networks, and Systems,
Chapter 10 by J.P. Odenwalder, Indiana : Howard W* Sams &
Company, 1985. ●

E.R. Berlekamp, Alqebraic Codinq Theory, New York : McGraw-
Hillr 1968.

6

E.R. Berlekamp, ‘sTheTechnology
Proceedings of the IEEE, Volume
May 1980.

,

EJR. Berlekamp, R.E. Peile, and S

of
68,

.Po

Error-Correcting Codes,lt
Number 5, pages 564-593,

Pope, “The Application of
Error Control to Communications ,“ IEEE Communications
Magazine, Volume Z5, Number 4, pages 44-57, April 1987..

G.C. Clark and J.B. Cain, Error-Correction Codinq for Digital
Communications, New York : Plenum Press, 1981.

N. Glover and T. Dudley, Practical Error Correction Desiqn for
Enaineers, Colorado : Data Systems Technology (DST), 1988.

A.M. Michelson and A.H. Levesque, Error-Control Technim es for
DicritalCommunication, New York : John Wiley & Sons, 1985.

F.J. McWilliams and N.J.A. Sloane, The Theon of Error-
CorrectincfCodes, Amersterdam : North Holland, 1977.

W.w. Petterson, Error-Correcting Codes, New York : The MIT
Press, 1961.

W.w. Petterson and E.J. Weldon, Error-Correctin~ Codes, New
York, : The MIT Press, 1972.

.—

M.K. Simon, J.K. Omura, R.A. Scholtz, B.K. Levitt, Spread
Spectrum Communications, Volumes 1,11, and III, Maryland :
Computer Science Press, 1985.

●

>

*

--

